دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: O.V. Gnana Swathika (editor), K. Karthikeyan (editor), Sanjeevikumar Padmanaban (editor) سری: ISBN (شابک) : 1032061774, 9781032061771 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 415 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Smart Buildings Digitalization: IoT and Energy Efficient Smart Buildings Architecture and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دیجیتالی سازی ساختمان های هوشمند: معماری و برنامه های کاربردی ساختمان های هوشمند اینترنت اشیا و انرژی کارآمد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب کاربردهای مختلف هوش مصنوعی و یادگیری ماشین را در مورد ساختمانهای هوشمند مورد بحث قرار میدهد. این شامل چگونگی ادغام منابع انرژی تجدیدپذیر در ساختمان های هوشمند با استفاده از دستگاه های برق-الکترونیکی مناسب است. استقرار فناوری های پیشرفته با ویژگی های نظارت، حفاظت و مدیریت انرژی همراه با مطالعه موردی در مورد اتوماسیون گنجانده شده است. به طور کلی، تمرکز بر روی معماری و کاربردهای مرتبط از جمله توزیع برق، ریزشبکهها، سیستمهای فتوولتائیک و جنبههای انرژی تجدیدپذیر است. مفاهیم ساختمان هوشمند و مزایای مرتبط با آن را تعریف می کند.
< /p>
این کتاب برای دانشجویان تحصیلات تکمیلی، محققان و متخصصان مهندسی سیستمهای ساختمان، مهندسی معماری، مهندسی برق طراحی شده است.
This book discusses various Artificial Intelligence and Machine Learning applications concerning smart buildings. It includes how renewable energy sources are integrated into smart buildings using suitable power- electronic devices. Deployment of advanced technologies with monitoring, protection, and energy management features are included along with a case study on automation. Overall, the focus is on architecture and related applications including power distribution, microgrids, photovoltaic systems and renewable energy aspects. Defines smart building concepts and its related benefits.
This book is aimed at graduate students, researchers and professionals in building systems engineering, Architectural engineering, electrical engineering.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Building Smart Cities and Smarter Data Centers for the 21st-Century Global Citizen: A Brief Study 1.1 Introduction: A Backdrop of Accessibility to Energy Globally and Also with India in Perspective: The Need for Smart Cities 1.2 The Need for Smart Cities 1.2.1 Brief Synopses on India’s Utilization of Energy Supply and Challenges 1.3 The Cost of Electricity 1.4 The New Normal as Countries Shift to Smart Technology and Smart Cities Powered by Intelligent Data Centers 1.5 Data Centers that Keep Smart Cities Going – The Brains Behind Bibliography Chapter 2 Big Data for SMART Sensor and Intelligent Electronic Devices – Building Application Acronym 2.1 Introduction 2.2 The Emergence and Considering Big Data toward Building Application 2.3 The Principle of Smart Buildings 2.4 What Is the Purpose of Designing Smart Buildings? 2.5 Application Domain 2.6 The Big Data Challenges and Benefits in Buildings 2.7 The Important Process in Smart Buildings 2.7.1 Technology and Protocols 2.7.2 Data Acquisition and Storage 2.8 Smart Sensors Generator of Big Data 2.9 Big Data Sources 2.10 Smart Building Application 2.11 HVAC Operation Management in a Smart Building 2.12 Developed Tenant Comfort Air Quality Condition 2.13 Secure Smart Access Control for Building Access 2.13.1 Index for Access Control 2.13.2 Mobile Technologies for Greater Security 2.13.3 Smart Access Control in Smart Building 2.13.4 Security Control System 2.14 Safety or Security Applications in Smart Sensors and Big Data 2.15 Conclusion References Chapter 3 IoT-Based Condition Monitoring and Automatic Control of Rotating Machines 3.1 Introduction 3.2 Related Work 3.3 Proposed System 3.4 Results and Discussion 3.5 Conclusion and Future Scope References Chapter 4 Design of CNTFET-Based Ternary Processor for IoT Devices 4.1 Introduction 4.2 Carbon Nanotube FET 4.3 Ternary Control Unit 4.4 Ternary ALU 4.5 Ternary Memory Unit 4.6 Ternary Processor 4.7 Conclusion References Chapter 5 IoT-Based Smart Buildings 5.1 Introduction 5.2 Literature Review 5.3 The Proposed System 5.4 Implementation 5.4.1 Process Flow 5.5 Software Simulation 5.6 Hardware Implementation 5.7 The Analysis 5.8 Results 5.9 Comparative Analysis 5.10 Conclusion and Future Work References Chapter 6 Benefits of Smart Buildings 6.1 What Are Smart Buildings? 6.2 What Are the Key Components of the Smart Building? 6.3 How Buildings Become Smarter? 6.4 What Are the Major Benefits of Smart Buildings? 6.4.1 Predictive Maintenance 6.5 More Occupant Productivity 6.6 Efficient Consumption of Energy 6.7 Smart Buildings Result in Increasing the Asset Value 6.8 Real-Time Action Becomes Easier with the Use of Smart Technology 6.9 Smart Buildings Anticipate Well in Advance 6.9.1 Improved Reliability 6.9.2 Improve Economics 6.9.3 Improve Efficiency 6.9.4 Improved Environment 6.10 Conclusion Chapter 7 An Approach to Realize Luxury Transit Residential Tower Aided with State-of-the-Art Automation Technologies 7.1 Introduction 7.2 Literature Review 7.3 HVAC Project Design 7.3.1 VRF Systems 7.3.2 High Wall/Cassette Units 7.3.3 Energy Recovery Ventilators 7.3.4 Condensing Unit 7.3.5 Toilet Ventilation 7.3.6 Kitchen Ventilation 7.3.7 VRF Control Units 7.3.8 Common Areas of the Apartment Tower 7.3.9 Electric Metering and Billing Systems for HVAC System 7.4 BHK: HVAC System Proposal 7.4.1 Electrical Services 7.4.1.1 Source of Power 7.4.1.2 Subdistribution of Power 7.4.1.3 Standby Power 7.4.1.4 Metering with Communication 7.4.1.5 Cable and Wires 7.4.1.6 Cable Trays and Raceways 7.4.1.7 Conduits 7.4.1.8 Wiring Devices 7.4.1.9 Light Fixtures 7.4.1.10 Home Automation System 7.4.1.11 Surge Protection System 7.4.1.12 Earthing 7.4.2 Fire Alarm and Public Evacuation System 7.4.3 Lighting System for the Apartments 7.4.4 Lighting System for the Public Areas 7.4.5 Plumbing System 7.4.6 Fire Protection System 7.5 Information and Communication Technology Infrastructure Services 7.5.1 Introduction 7.5.2 Services Offered 7.5.3 Apartment Consolidation Panel 7.5.3.1 Internet 7.5.3.2 Wireless Access Point (WAP) 7.5.3.3 Telephone 7.5.3.4 SMATV 7.6 Security 7.6.1 Standards 7.6.2 Surveillance 7.6.3 Lighting 7.6.4 Access 7.6.5 Safety Features Provided in the Case Study 7.7 Vertical Transportation in ITC One Colombo One Residential Tower 7.8 Proposed Remote Control Unit Logic for Use Cases/Settings 7.8.1 First Guest Arrival (The Guest Has Arrived to the Room after Check-in) 7.8.2 Guest Card Removal (When the Guest Leaves the Room) 7.8.3 Subsequent Guest Arrival 7.8.4 Privacy Setting (DND) 7.8.5 MMR 7.8.6 Housekeeping Arrival 7.8.7 Evening Turn Down 7.8.8 Bedside Master Switch 7.8.9 Good Night Switch 7.8.10 Valet Service Function – Laundry Service 7.8.11 Movement Sensor 7.9 Bypassed Circuits 7.9.1 Corridor Panel 7.9.2 Door Strike Operation 7.9.3 Other Specifications 7.9.4 Laptop Software Utility for Trouble-shooting to Work with the Same Communication Port and Same Communication Protocol, Provided for iPad Solution 7.10 Proposed Remote Control Unit Logic for TV Mute System-Use Cases/Settings 7.10.1 Single TV Room: Main Room TV On – Bedside/Bathroom Phone Ring 7.10.2 Multiple TV Room: Bedroom TV On, Living Room TV On – All Phones Ring 7.10.3 Communication with TV for Mute/Unmute Command/Status 7.11 Conclusion References Chapter 8 ANN-Based Overcurrent Relay Using the Levenberg–Marquardt Algorithm for Smart Cities 8.1 Introduction: Background and Driving Forces 8.2 Design 8.3 Overview of Levenberg–Marquardt Algorithm 8.4 Algorithm Developed 8.5 Results and Discussion 8.6 Conclusion References Chapter 9 A Neural Network–Based Vector Control Scheme for Regenerative Converters to Use in Elevator Systems 9.1 Introduction: Background and Driving Forces 9.2 Existing Elevator Systems 9.3 Conventional Braking Resistors 9.4 New AC/DC Bidirectional Converter 9.5 Measurement of Input Parameters in the System 9.5.1 Utility Side AC Voltage (V), Current (A), Frequency (Hz), and Energy (kWh) 9.5.2 Traction Motor Speed (rpm) 9.5.3 Elevator Load (kg) 9.5.4 Elevator Travelling Direction (Up/Down) 9.6 System Data Inputs 9.7 Summary of PI Regulator Model Simulated Data 9.8 Proposed System Overview 9.9 Proposed System Block Diagram 9.10 Simulink Model of NN-Based Control System 9.11 System Outputs 9.12 Comparison of Output Data 9.13 Energy Calculation Results 9.14 Average Energy Improvement 9.15 Improvements in Input Signal Quality 9.16 Overall System Improvements 9.17 System Limitations References Chapter 10 Protection in Smart Building: Mini Review 10.1 Introduction: Smart Building 10.2 Architecture of Smart Buildings 10.3 Need of Smart Buildings 10.4 Protection Issues in Microgrid 10.5 Challenges and Solutions for the Protection of Microgrid 10.6 Protection Strategies of Smart Buildings in Microgrid 10.7 Conclusion References Chapter 11 A Review of Bio-Inspired Computational Intelligence Algorithms in Electricity Load Forecasting 11.1 Introduction 11.2 Bio-Inspired Computing 11.3 Evolution-Based Optimization Algorithm 11.3.1 Genetic Algorithm 11.3.2 Differential Evolution Algorithm 11.4 Swarm Intelligence-Based Optimization Algorithm 11.4.1 Particle Swarm Optimization 11.4.2 Ant Colony Optimization 11.4.3 Bees Colony Optimization 11.4.4 Firefly Optimization 11.4.5 Bat Algorithm 11.4.6 Gray Wolf Algorithm 11.4.7 Cuckoo Search Algorithms 11.5 Artificial Immune System-Based Optimization Algorithm 11.6 Neural System-Based Algorithm 11.7 Role of Bio-Inspired Computational Intelligence Algorithms in Load Forecasting 11.8 Conclusion References Chapter 12 Arduino-Based Fault Detection Schemes for DC Microgrids Abbreviations 12.1 Introduction 12.2 DC Microgrid Configuration 12.3 Modeling of DC Microgrid 12.3.1 Modeling of Photovoltaic Cell 12.3.2 Modeling of Wind Generation System 12.3.3 Modeling of Capacitor Bank 12.3.4 Modeling of Battery System 12.4 Fault Detection Based on Relay Communication in DC Microgrid 12.5 Conclusion and Future Work References Chapter 13 Characterizing Voltage-Dependent Loads and Frequency-Dependent Loads for Load Stability Analysis 13.1 Voltage Stability Elucidation 13.2 Problem Statement 13.3 Material and Method for Implementation 13.3.1 Voltage-Dependant Load Models 13.3.2 Frequency-Dependent Load Models 13.3.3 Binary Search Algorithm 13.3.4 Thyristor-Controlled Series Capacitor 13.3.5 Test System 13.4 Implementation 13.5 Culmination 13.6 Further Scope for Research References Chapter 14 Enabling Technologies for Smart Buildings: High Power Density Power Electronic Converters 14.1 Introduction: Background and Driving Forces 14.2 Dependency and Practical Issues: To Enable High Power Density 14.3 Integrated Power Device Technology 14.4 Wide Bandgap Technology 14.5 Embedded Microjets—Thermal Management 14.6 Micro-electromechanical System (MEMS) Inductors 14.7 Conclusion References Chapter 15 Benefits of Smart Meters in Institutional Building – A Case Study 15.1 Introduction 15.2 Data Collection and Handling 15.3 Tool and Software 15.4 Classification of Dataset 15.5 Load Behavior Pattern References Chapter 16 Placement of Distributed Generation (DG) and Reconfiguration in Radial Distribution Systems – A Review in View of the Smart Building Concept 16.1 Introduction 16.2 Microgrids 16.3 Radial Distribution Structure/Network 16.3.1 Optimal Power Flow 16.3.2 Constraints 16.4 Power Loss Minimization 16.5 Conclusion References Chapter 17 Photovoltaic System-Integrated Smart Buildings: A Mini Review Abbreviations 17.1 Introduction 17.2 Stand-Alone and Grid-Connected PV Systems 17.3 SAPV System 17.4 Energy Storage and Management in PV Systems 17.5 Climatic Effects on PV Systems 17.6 Case Study on Real-Time PV Applications 17.7 Conclusion References Chapter 18 Design of a Hybrid Photovoltaic and Battery Energy Storage System Using HOMER Software 18.1 Introduction 18.2 Economic Utility 18.2.1 Definition 18.2.2 Assumptions 18.3 Environmental Impacts 18.4 Application of HOMER 18.5 Performance of HOMER 18.6 Metrics for Design and Consequence References Chapter 19 AI Applications to Renewable Energy – An Analysis 19.1 Introduction 19.2 Latest Research of AI in Renewables 19.3 Potential Scope for Research 19.4 Conclusion References Chapter 20 Development of UAV-Based Aerial Observation Platform to Monitor Medium-Voltage Networks in Urban Areas 20.1 Introduction 20.1.1 Background 20.1.1.1 Sri Lankan Distribution Network 20.1.2 Problem Statement 20.1.3 Objectives of the Study 20.1.4 Motivation 20.1.5 Methodology 20.2 Literature Review 20.3 Design and Development 20.3.1 Fault Identification 20.3.1.1 Correction of Object Perspective due to Different Capturing Angle 20.3.1.2 Pattern Recognition 20.3.1.3 Pattern Clustering 20.3.2 Development of the Quadcopter 20.3.2.1 Design Inputs 20.3.2.2 Design Calculations 20.3.2.3 Kinematics 20.3.2.4 Electrical Forces (Motors) 20.3.2.5 Aerodynamic Forces 20.3.2.6 Dynamics of the Quadcopter 20.3.2.7 Components Used in the Design 20.4 Testing and Validation 20.4.1 Obtaining Images to Study the Assembly in Details 20.4.1.1 Insulation Assembly 20.4.1.2 DDLO and Surge Arrester Assembly 20.4.1.3 Transformer LV Bushing 20.4.2 Feeder Line Surveying 20.4.3 Image Patch and Defect Identification Algorithm Testing 20.4.4 Quadcopter Testing 20.4.4.1 Tuning the Parameters 20.4.4.2 Control Signal vs Drone Response with Initial Parameters 20.4.4.3 Control Signal vs Drone Response after Applying the Current Parameters 20.4.4.4 Altitude Holding Function 20.4.4.5 Impact Analysis on Time and Space Requirement for Inspection Process 20.4.5 Limitation of the Study 20.5 Conclusion References Appendix 1 Index