دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Gerrit Meixner
سری: Human–Computer Interaction Series
ISBN (شابک) : 9783030451301, 9783030451318
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 359
[358]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Smart Automotive Mobility: Reliable Technology for the Mobile Human به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحرک هوشمند خودرو: فناوری قابل اعتماد برای انسان متحرک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر نتایج هوشمند در زمینه تحرک خودروهای هوشمند با تمرکز بر خودروهای (نیمه) خودران تمرکز دارد. نتایج بر اساس 5 پروژه تحقیقاتی اخیراً با بودجه عمومی با بودجه بیش از 15 میلیون یورو به پایان رسیده است. نویسندگان با ارائه دیدگاههایی در مورد نسل بعدی تحرک شخصیشده در جاده، درباره سیستمهای تعاونی شخصیسازیشده و سازگار برای خودروهای بسیار خودکار و چگونگی توسعه آنها به روشی انسانمحور بحث میکنند. علاوه بر این، کتاب در مورد تعامل همکاری راننده و وسیله نقلیه گزارش می دهد. راننده و وسیله نقلیه چگونه می توانند از یکدیگر حمایت کنند؟ بهترین مهارت های آنها چیست و چگونه می توانند از یکدیگر بهره ببرند؟ همچنین بینشهای جدیدی در مورد ژستهای بصری فرمان بر روی فرمان ارائه میکند که مانورهایی را آغاز میکند که توسط اتوماسیون اجرا میشوند، و تحت نظارت، تحتتاثیر یا قطع شدن راننده قرار میگیرند. این کتاب با اطلاعاتی در مورد یک سیستم پرتو لیزری همکاری میکند که ارتباط بین شرکتکنندگان مختلف جاده را برای بهینهسازی ایمنی جاده فردا بهبود میبخشد. تحرک هوشمند خودرو: فناوری قابل اعتماد برای انسان متحرک منبع ایده آلی برای محققان، دانشجویان و شاغلین در زمینه سیستم های هوشمند برای صنعت خودرو است. این اطلاعات ارزشمند و فشرده از پروژه های تحقیقاتی چند میلیون یورویی که توسط وزارت آموزش و تحقیقات فدرال آلمان تأمین می شود، ارائه می دهد.
This book focuses on smart results in the field of smart automotive mobility concentrating on (semi-)autonomous cars. The results are based on 5 recently finished public-funded research projects with a budget of over 15 million Euro. Providing insights into the next generation of personalized mobility on the road the authors discuss personalized, adaptive cooperative systems for highly automated cars and how they can be developed in a human-centered way. Furthermore, the book reports on a cooperative driver-vehicle interaction. How can the driver and the vehicle support each other? What are their best skills and how can they benefit from each other? It also gives novel insights on intuitive steering gestures on the steering wheel which initiate maneuvers to be executed by the automation, and to be supervised by, influenced or interrupted by the driver. The book finishes with information on a cooperative laser beam system which improves the communication between the different road participants to optimize the road safety of tomorrow. Smart Automotive Mobility: Reliable Technology for the Mobile Human is an ideal source for researchers, students and practitioners working in the area of intelligent systems for the automotive industry. It gives valuable and condensed information from multi-million Euro research projects funded by the German Federal Ministry of Education and Research.
Preface Contents Editor and Contributors 1 Personalisation and Control Transition Between Automation and Driver in Highly Automated Cars 1.1 Introduction 1.2 Action Recognition for Driver Monitoring 1.2.1 Impact of Driver Activities on Takeover Manoeuvres 1.2.2 Action Recognition in Computer Vision and Its Application in the Interior of Cars 1.2.3 Drive&Act Dataset for Fine-Grained Driver Activity Recognition 1.2.4 Recognition Approaches 1.2.5 Approach Based on Body Pose and 3D Model 1.2.6 CNN-Based Models 1.3 Evaluation and Discussion 1.4 Human–Machine Interface and Control Transition Concept 1.4.1 Transition Phase 1—Priming the Driver 1.4.2 Transition Phase 2—Supporting the Driver to Take Over the Control 1.5 Implementation Aspects 1.5.1 Driving Scenarios 1.5.2 Concept Vision 1.5.3 System Architecture 1.5.4 Mobile Device/Mobile Phone Application 1.6 Study Results 1.6.1 Preparations 1.6.2 Simulator Studies 1.6.3 Driving Study—Perception of Use Cases in Personalised and Individualised Driving 1.6.4 Study Results—Perception of Use Cases in Individualised and Personalised Driving (Subjective) and the Effect of Secondary Tasks 1.6.5 Study Results—Perception of Use Cases in Individualised and Personalised Driving (Objective)/Driving Data 1.7 Summary and Discussion of the Studies 1.8 Conclusion References 2 KomfoPilot—Comfortable Automated Driving 2.1 Background, Aims and Summary of Results 2.1.1 Background 2.1.2 Project Aims 2.1.3 Summary of Results 2.2 Methodology of the KomfoPilot Project 2.2.1 Study Overview 2.2.2 Cross-Study Assessment Methods 2.2.3 Driving Simulator Study 1—Driving Style Evaluation 2.2.4 Driving Simulator Study 2—HMI Evaluation 2.2.5 Test Track Study—Driving Style Evaluation 2.3 Enhancing Comfort in Automated Driving—User Evaluation of Different Strategies on a General Level 2.3.1 Overview 2.3.2 Driving Simulator Study 1—Driving Style Evaluation 2.3.3 Driving Simulator Study 2—HMI Evaluation 2.3.4 Test Track Study—Driving Style Evaluation 2.4 Discomfort Related to Driving Situations and Driving Style 2.4.1 Data Preparation 2.4.2 Results 2.4.3 Discussion 2.5 Physiological Indicators of Discomfort 2.5.1 Physiology and Discomfort 2.5.2 The Smartband MS Band 2 as Sensor for Physiology 2.5.3 Processing of Physiological Data 2.5.4 Results 2.5.5 Discussion and Conclusions 2.6 Algorithm Development for Discomfort Detection 2.6.1 Measurement of Discomfort 2.6.2 Estimation of Discomfort 2.6.3 Data and Data Processing 2.6.4 Results 2.6.5 Discussion and Conclusions 2.7 Legal Aspects of Camera-Supported Driving Comfort Recording 2.7.1 Camera-Based Real-Time Comfort Measurement 2.7.2 Data Protection Law 2.7.3 Art Copyright Law 2.7.4 Project-Related Solutions References 3 KoFFI—The New Driving Experience: How to Cooperate with Automated Driving Vehicles 3.1 Starting Your Journey/Introduction 3.2 Data Protection and Selected Legal Issues of Automated Driving 3.2.1 Introduction 3.2.2 A Short Comparative Law Trip 3.2.3 Project-Related Data (Types): Personal Data? 3.2.4 Personal Data: Who is Who? 3.2.5 Potential Recipients of the Data and Data Mobility 3.2.6 The Road Ahead 3.2.7 Conclusion 3.3 Design of a Guardian Angel 3.3.1 Why Do We Need a Guardian Angel in the Car? 3.3.2 Designing the Guardian Angel 3.3.3 Changing the Perspective of the Driver 3.3.4 Summary 3.4 Cooperation at System Limits of Automated Cars and Human Beings 3.4.1 Driver Limitation/Cooperation 3.4.2 Cooperation at System Limits 3.5 Innovative Speech Dialogue System 3.5.1 Introduction: Trust and Explanations with Highly Automated Vehicles 3.5.2 What Does the Driver Say? 3.5.3 Explanations 3.5.4 Prioritization and Urgency 3.5.5 Architecture 3.5.6 Conclusion and Future Work 3.6 The Making of an Automated Driving HMI 3.7 How to Apply Ethics-By-Design 3.7.1 Challenges and Questions 3.7.2 What is Ethics (By Design)? 3.7.3 Open Questions 3.7.4 The KoFFI Questionnaire 3.7.5 The 5 Ethical Imperatives 3.8 Lessons Learned/Cooperated Driving References 4 Ethical Recommendations for Cooperative Driver-Vehicle Interaction—Guidelines for Highly Automated Driving 4.1 Introduction 4.1.1 What Are Ethical Guidelines? 4.1.2 What is Ethics? 4.1.3 Implementing Ethics in Research and Development and into the New Product 4.1.4 Key Points for Ethical Guidelines 4.1.5 Guidelines for Highly Automated Driving 4.1.6 What to Do? Practical Examples and Questions for Self-Assessment 4.1.7 Questionnaire for Ethical Self-assessment References 5 Vorreiter: Manoeuvre-Based Steering Gestures for Partially and Highly Automated Driving 5.1 Biologically Inspired Manoeuvre Gestures for Partially and Highly Automated Driving: Introduction and Overview 5.1.1 Introduction: Humans, Automation and the Quest for Intuitive Interaction and Cooperation 5.1.2 Vehicle Automation and Autonomous Functions 5.1.3 Manoeuvre-Based Driving and Gestures 5.1.4 Gestures for Manoeuvre-Based Driving in the BMBF Project “Vorreiter” 5.2 Design and Use Space of Manoeuvre Gestures 5.2.1 Introduction 5.2.2 Requirement Analysis and System Qualities 5.2.3 Structures and Dimensions of the System: Design and Use Space 5.2.4 Iterative Design: Structuring of Design Space and Use Space 5.2.5 Further Development of Manoeuvres in Their Use Space and User Groups 5.3 Vorreiter User Groups and Their Requirements Based on Empirical User Research 5.3.1 Introduction 5.3.2 Mass Market 5.3.3 Novice and Younger Drivers 5.3.4 Older Drivers Who Are no Longer Fully Fit to Drive 5.3.5 People with Disabilities 5.4 Interviews at Paravan: Exploration of Driving Gestures for People with Disabilities 5.4.1 Introduction 5.4.2 Clinical Pictures and Previous Driving Solutions for Physical Disabled People 5.4.3 Exploration Results 5.4.4 Discussion of the Gestures Proposed by People with Disabilities 5.5 Explorative Design and Development of Swipe Gestures for Interaction with Highly Automated Cars 5.5.1 Introduction 5.5.2 Diary Studies and Future Workshops 5.5.3 Exploration with Extreme Users 5.5.4 Future Workshops and Swipe Gesture Design 5.5.5 Joint Application Development with Usability Experts 5.5.6 Evaluation in the Driving Simulator (Wizard-of-Oz) 5.6 Wizard-of-Oz Vehicle for the Test of Manoeuvre Gestures 5.6.1 Introduction 5.6.2 History of the Wizard-of-Oz Method Applied to Vehicles and the General Test Set-Up 5.6.3 The Vorreiter Test Vehicle Set-Up 5.7 Manoeuvre-Based Steering Gestures—The Legal Point of View 5.7.1 Introduction 5.7.2 The Technology and Its Objectives 5.7.3 Admissibility of (Use of) Technology 5.7.4 Liability Law: Settlement of Damages 5.7.5 Driving Licence Law: Rules on Entitlement to Application 5.7.6 Summary 5.8 Towards a Catalogue of Manoeuvre Gestures for Partially and Highly Automated Driving: Results from Vorreiter 5.8.1 Introduction 5.8.2 First Gesture Catalogue for Manoeuvre-Based Driving 5.8.3 Details of the Gesture Recognition 5.8.4 Mediation of Driving Manoeuvres 5.8.5 Summary 5.9 The Valeo Steering Wheel as an Innovative HMI for Steering Gestures 5.9.1 Introduction 5.9.2 Interface for Steering Gestures 5.9.3 Gain and Increase Trust to Assisted and Automated Driving Functions to Ensure a High Frequent Use of These 5.9.4 Easy and Lean Integration to Ensure the Path to Industrialization 5.10 Experimental Results for Swipe Gestures Versus Joystick in a Virtual Reality User Study 5.10.1 Introduction 5.10.2 Hypotheses 5.10.3 Method Study 1 5.10.4 Results of VR Study 1 5.10.5 Discussion of Study 1 5.10.6 Method of VR Study 2 5.10.7 Results of VR Study 2 5.10.8 Discussion of VR Study 2 5.10.9 General Discussion 5.10.10 Qualitative Trial with Expert User 5.11 Experimental Results for Push/Twist Versus Swipe Gestures on a Steering Wheel in Partially and Highly Automated Driving 5.11.1 Introduction 5.11.2 Method 5.11.3 First Results 5.11.4 Discussion 5.11.5 Qualitative Study with Driver with Disability 5.12 Outlook: Real Vehicle Testing Platform for and Towards a Standardized Catalogue of Cooperative Steering Gestures References 6 Light-Based Communication to Further Cooperation in Road Traffic 6.1 Introduction 6.2 The Need for Cooperation in Traffic 6.2.1 Method of the Audio Study 6.2.2 Method of the Online Survey 6.2.3 Subjective Needs in Road Traffic and Their Consequences 6.3 Explaining Intentions and Expressing Gratitude 6.3.1 Method 6.3.2 Results 6.4 Communicating One’s Intentions—“I Would like to Enter the Main Road!” 6.4.1 Method 6.4.2 Results 6.5 Light-Based Communication in Traffic References