دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Namita Gupta (editor), Prasenjit Chatterjee (editor), Tanupriya Choudhury (editor) سری: ISBN (شابک) : 9781119750581 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 576 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 77 مگابایت
در صورت تبدیل فایل کتاب Smart and Sustainable Intelligent Systems (Sustainable Computing and Optimization) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هوشمند هوشمند و پایدار (محاسبات پایدار و بهینه سازی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جهان دورهای از تغییر و رشد بیسابقه را از طریق تمام پیشرفتهای الکترونیکی و فنی تجربه میکند و همه افراد روی کره زمین تحت تأثیر قرار گرفتهاند. آنچه زمانی «علمی تخیلی» بود، امروز به واقعیت تبدیل شده است.
این کتاب با توضیح کامل فناوریهای کنونی، دنیای بسیاری از پیشرفتهای غیرقابل تصور را بررسی میکند. هر فصل بر جنبهای متفاوت تمرکز دارد - بینایی ماشین، تحلیل الگو و پردازش تصویر - روندهای پیشرفته در هوش محاسباتی و تجزیه و تحلیل دادهها - فناوریهای ارتباطی آیندهنگر - فناوریهای مخرب برای پایداری آینده. این فصول شامل فهرستی از موضوعاتی است که تمامی حوزههای سیستمهای هوشمند هوشمند و محاسبات را شامل میشود: دادهکاوی با محاسبات نرم، محاسبات تکاملی، محاسبات کوانتومی، سیستمهای خبره، ارتباطات نسل بعدی، مدیریت بلاک چین و اعتماد، بیومتریک هوشمند، چند سیستمهای منطقی ارزشمند، محاسبات ابری و امنیت و غیره. فهرست گستردهای از منابع کتابشناختی در پایان هر فصل، خواننده را راهنمایی میکند تا در حوزه کاربردی مورد علاقهاش بیشتر تحقیق کند.
The world is experiencing an unprecedented period of change and growth through all the electronic and technilogical developments and everyone on the planet has been impacted. What was once ‘science fiction’, today it is a reality.
This book explores the world of many of once unthinkable advancements by explaining current technologies in great detail. Each chapter focuses on a different aspect - Machine Vision, Pattern Analysis and Image Processing - Advanced Trends in Computational Intelligence and Data Analytics - Futuristic Communication Technologies - Disruptive Technologies for Future Sustainability. The chapters include the list of topics that spans all the areas of smart intelligent systems and computing such as: Data Mining with Soft Computing, Evolutionary Computing, Quantum Computing, Expert Systems, Next Generation Communication, Blockchain and Trust Management, Intelligent Biometrics, Multi-Valued Logical Systems, Cloud Computing and security etc. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.
Cover Half-Title Page Series Page Title Page Copyright Page Dedication Contents Preface Organization of the Book Acknowledgement Part 1: MACHINE LEARNINGAND ITS APPLICATION 1 Single Image Super-Resolution Using GANs for High-Upscaling Factors 1.1 Introduction 1.2 Methodology 1.2.1 Architecture Details 1.2.2 Loss Function 1.3 Experiments 1.3.1 Environment Details 1.3.2 Training Dataset Details 1.3.3 Training Parameters 1.4 Experiments 1.5 Conclusions 1.6 Related Work References 2 Landmark Recognition Using VGG16 Training 2.1 Introduction 2.2 Related Work 2.2.1 ImageNet Classification 2.2.2 Deep Local Features 2.2.3 VGG Architecture 2.3 Proposed Solution 2.3.1 Revisiting Datasets 2.4 Results and Conclusions 2.5 Discussions References 3 A Comparison of Different Techniques Used for Classification of Bird Species From Images 3.1 Introduction 3.2 CUB_200_2011 Birds Dataset 3.3 Machine Learning Approaches 3.3.1 Softmax Regression 3.3.2 Support Vector Machine 3.3.3 K-Means Clustering 3.4 Deep Learning Approaches 3.4.1 CNN 3.4.2 RNN 3.4.3 InceptionV3 3.4.4 ImageNet 3.5 Conclusion 3.6 Conclusion and Future Scope References 4 Road Lane Detection Using Advanced Image Processing Techniques 4.1 Introduction 4.2 Related Work 4.3 Proposed Approach 4.4 Analysis 4.4.1 Dataset 4.4.2 Camera Calibration and Distortion Correction 4.4.3 Threshold Binary Image 4.4.4 Perspective Transform 4.4.5 Finding the Lane Lines—Sliding Window 4.4.6 Radius of Curvature and Central Offset 4.5 Annotation 4.6 Illustrations 4.7 Results and Discussions 4.8 Conclusion and Future Work References 5 Facial Expression Recognition in Real Time Using Convolutional Neural Network 5.1 Introduction 5.1.1 Need of Study 5.2 Related Work 5.3 Methodology 5.3.1 Applying Transfer Learning using VGG-16 5.3.2 Modeling and Training 5.4 Results 5.5 Conclusion and Future Scope References 6 Feature Extraction and Image Recognition of Cursive Handwritten English Words Using Neural Network and IAM Off-Line Database 6.1 Introduction 6.1.1 Scope of Discussion 6.2 Literature Survey 6.2.1 Early Scanners and the Digital Age 6.2.2 Machine Learning 6.3 Methodology 6.3.1 Dataset 6.3.2 Evaluation Metric 6.3.3 Pre-Processing 6.3.4 Implementation and Training 6.4 Results 6.4.1 CNN Output 6.4.2 RNN Output 6.4.3 Model Analysis 6.5 Conclusion and Future Work 6.5.1 Image Pre-Processing 6.5.2 Extend the Model to Fit Text-Lines 6.5.3 Integrate Word Beam Search Decoding References 7 License Plate Recognition System Using Machine Learning 7.1 Introduction 7.1.1 Machine Learning 7.2 Related Work 7.3 Classification Models 7.3.1 Logistic Regression 7.3.2 Decision Trees 7.3.3 Random Forest 7.3.4 K Means Clustering 7.3.5 Support Vector Machines 7.4 Proposed Work and Methodology 7.4.1 Detect License Plate 7.4.2 Segmentation 7.4.3 Training the Model 7.4.4 Prediction and Recognition 7.5 Result 7.6 Conclusion 7.7 Future Scope References 8 Prediction of Disease Using Machine Learning Algorithms 8.1 Introduction 8.2 Datasets and Evaluation Methodology 8.2.1 Datasets 8.3 Algorithms Used 8.3.1 Decision Tree Classifier 8.3.2 Random Forest Classifier 8.3.3 Support Vector Machines 8.3.4 K Nearest Neighbors 8.4 Results 8.5 Conclusion References Part 2: DEEP LEARNING AND ITS APPLICATION 9 Brain Tumor Prediction by Binary Classification Using VGG-16 9.1 Introduction 9.2 Existing Methodology 9.2.1 Dataset Description 9.2.2 Data Import and Preprocessing 9.3 Augmentation 9.3.1 For CNN Model 9.3.2 For VGG 16 Model 9.4 Models Used 9.4.1 CNN Model 9.4.2 VGG 16 Model 9.5 Results 9.6 Comparison 9.7 Conclusion and Future Scope References 10 Study of Gesture-Based Communication Translator by Deep Learning Technique 10.1 Introduction 10.2 Literature Review 10.3 The Proposed Recognition System 10.3.1 Image Acquisition 10.3.2 Pre-Processing 10.3.3 Classification and Recognition 10.3.4 Post-Processing 10.4 Result and Discussion 10.5 Conclusion 10.6 Future Work References 11 Transfer Learning for 3-Dimensional Medical Image Analysis 11.1 Introduction 11.2 Literature Survey 11.2.1 Deep Learning 11.2.2 Transfer Learning 11.2.3 PyTorch and Keras (Our Libraries) 11.3 Related Works 11.3.1 Convolution Neural Network 11.3.2 Transfer Learning 11.4 Dataset 11.4.1 Previously Used Dataset 11.4.2 Data Acquiring 11.4.3 Cleaning the Data 11.4.4 Understanding the Data 11.5 Description of the Dataset 11.6 Architecture 11.7 Proposed Model 11.7.1 Model 1 11.7.2 Model 2 11.7.3 Model 3 11.8 Results and Discussion 11.8.1 Coding the Model 11.9 Conclusion 11.10 Future Scope Acknowledgement References 12 A Study on Recommender Systems 12.1 Introduction 12.2 Background 12.2.1 Popularity-Based 12.2.2 Content-Based 12.2.3 Collaborative Systems 12.3 Methodology 12.3.1 Input Parameters 12.3.2 Implementation 12.3.3 Performance Measures 12.4 Results and Discussion 12.5 Conclusions and Future Scope References 13 Comparing Various Machine Learning Algorithms for User Recommendations Systems 13.1 Introduction 13.2 Related Works 13.3 Methods and Materials 13.3.1 Content-Based Filtering 13.3.2 Collaborative Filtering 13.3.3 User–User Collaborative Filtering 13.3.4 Item–Item Collaborative Filtering 13.3.5 Random Forest Algorithm 13.3.6 Neural Networks 13.3.7 ADA Boost Classifier 13.3.8 XGBoost Classifier 13.3.9 Trees 13.3.10 Regression 13.3.11 Dataset Description 13.4 Experiment Results and Discussion 13.5 Future Enhancements 13.6 Conclusion References 14 Indian Literacy Analysis Using Machine Learning Algorithms 14.1 Introduction 14.2 Related Work 14.3 Solution Approaches 14.3.1 Preparation of Dataset 14.3.2 Data Reduction 14.3.3 Data Visualization 14.3.4 Prediction Models 14.4 Proposed Approach 14.5 Result Analysis 14.6 Conclusion and Future Scope 14.6.1 Conclusion 14.6.2 Future Scope References 15 Motion Transfer in Videos using Deep Convolutional Generative Adversarial Networks 15.1 Introduction 15.2 Related Work 15.3 Methodology 15.3.1 Pre-Processing 15.3.2 Pose Detection and Estimation 15.4 Pose to Video Translation 15.5 Results and Analysis 15.6 Conclusion and Future Scope References 16 Twin Question Pair Classification 16.1 Introduction 16.2 Literature Survey 16.2.1 Duplicate Quora Questions Detection by Lei Guo, Chong Li & Haiming Tian 16.2.2 Natural Language Understanding with the Quora Question Pairs Dataset by Lakshay Sharma, Laura Graesser, Nikita Nangia, Utku Evci 16.2.3 Duplicate Detection in Programming Question Answering Communities by Wei Emma Zhang and Quan Z. Sheng, Macquarie University 16.2.4 Exploring Deep Learning in Semantic Question Matching by Arpan Poudel and Ashwin Dhakal [1] 16.3 Methods Applied for Training 16.3.1 Count Vectorizer 16.3.2 TF-IDF Vectorizer 16.3.3 XG Boosting 16.3.4 Random Forest Classifier 16.4 Proposed Methodology 16.4.1 Data Collection 16.4.2 Data Analysis 16.4.3 Data Cleaning and Pre-Processing 16.4.4 Embedding 16.4.5 Feature Extraction 16.4.6 Data Splitting 16.4.7 Modeling 16.5 Observations 16.6 Conclusion References 17 Exploration of Pixel-Based and Object-Based Change Detection Techniques by Analyzing ALOS PALSAR and LANDSAT Data 17.1 Introduction 17.2 Classification of Pixel-Based and Object-Based Change Detection Methods 17.2.1 Image Ratio 17.2.2 Image Differencing 17.2.3 Image Regression 17.2.4 Vegetation Index Differencing 17.2.5 Minimum Distance Classification 17.2.6 Maximum Likelihood Classification 17.2.7 Spectral Angle Mapper (SAM) 17.2.8 Support Vector Machine 17.3 Experimental Results 17.3.1 Omission Error 17.3.2 Commission Error 17.3.3 User Accuracy 17.3.4 Producer Accuracy 17.3.5 Overall Accuracy 17.4 Conclusion Acknowledgment References 18 Tracing Bad Code Smells Behavior Using Machine Learning with Software Metrics 18.1 Introduction 18.2 Related Work and Motivation 18.3 Methodology 18.3.1 Data Collection 18.3.2 Static Code Analysis 18.3.3 Sampling 18.3.4 Machine Learning Approach 18.4 Result Analysis and Manual Validation 18.5 Threats, Limitation and Conclusion References 19 A Survey on Various Negation Handling Techniques in Sentiment Analysis 19.1 Introduction 19.2 Methods for Negation Identification 19.2.1 Bag of Words 19.2.2 Contextual Valence Shifters 19.2.3 Semantic Relations 19.2.4 Relations and Dependency-Based or Syntactic-Based 19.3 Word Embedding 19.4 Conclusion References 20 Mobile-Based Bilingual Speech Corpus 20.1 Introduction 20.2 Overview of Multilingual Speech Corpus for Indian Languages 20.3 Methodology for Speech Corpus Development 20.3.1 Recording Setup 20.3.2 Capturing 20.3.3 Segregation and Editing 20.4 Description of Bilingual Speech Corpus 20.5 Conclusion and Future Scope References 21 Intrusion Detection using Nature-Inspired Algorithms and Automated Machine Learning 21.1 Introduction 21.2 Related Work 21.3 Methodology 21.3.1 Nature Inspired Algorithms for Feature Selection 21.3.2 Automated Machine Learning 21.3.3 Architecture Search using Bayesian Search 21.3.4 Hyperparameter Optimization Through Particle Swarm Optimization (HPO-PSO) 21.4 Results 21.5 Conclusion References Part 3: SECURITY AND BLOCKCHAIN 22 Distributed Ownership Model for Non-Fungible Tokens 22.1 Introduction 22.2 Background 22.2.1 Blockchain Technology 22.2.2 Ownership 22.3 Proposed Architecture 22.3.1 Overview 22.3.2 Implementation 22.3.3 Rationale for Smart Contract 22.3.4 Smart Contract Tables 22.4 Use-Cases 22.4.1 Transaction Volume 22.4.2 Comparison Between NFT Tokens 22.5 Example Usage 22.5.1 Current Scenario 22.5.2 Solution by Distributed NFT 22.6 Results 22.7 Conclusion and Future Work References 23 Comparative Analysis of Various Platforms of Blockchain 23.1 Introduction to Blockchain 23.2 Important Terms of Blockchain 23.2.1 Decentralization 23.2.2 Ledger 23.2.3 Consensus Algorithm 23.2.4 51% Attack 23.2.5 Merkle Tree 23.2.6 Cryptography 23.2.7 Smart Contract 23.3 Bitcoin or Blockchain 23.3.1 Primary Key and Public Key 23.3.2 Workflow of Bitcoin 23.4 Platforms of Blockchain 23.4.1 Ethereum 23.4.2 Hyperledger 23.4.3 R3 Corda 23.4.4 Stellar 23.4.5 Multichain 23.5 Blockchain Platforms and Comparative Analysis 23.6 Conclusion References 24 Smart Garbage Monitoring System 24.1 Introduction 24.2 Literature Review 24.3 System Design 24.4 System Specifications 24.4.1 Components 24.4.2 Simulation Tool 24.4.3 Analytics Tool 24.5 Circuit Diagram 24.6 Proposed Approach 24.7 Implementation 24.8 Result 24.9 Conclusion 24.10 Future Scope References 25 Study of Various Intrusion Detection Systems: A Survey 25.1 Introduction 25.2 Structure of IDS 25.3 Intrusion Detection Systems 25.3.1 Host-Based IDS (HIDS) 25.3.2 Network-Based IDS (NIDS) 25.3.3 Types of Network-Based Detection Technique 25.4 Types of Attacks 25.5 Recent Improved Solutions to Intrusion Detection 25.5.1 Based on Data Mining and Machine Learning Methods 25.5.2 Knowledge-Based 25.5.3 Evolutionary Methods and Optimization Techniques 25.6 Analysis of Exiting IDS Based on Technique Used 25.7 Analysis of Existing IDS in Different Domains 25.7.1 IDS for IoT 25.7.2 IDS in Cloud Computing Environment 25.7.3 IDS in Web Applications 25.7.4 IDS for WSN (Wireless Sensor Network) 25.8 Conclusion References Part 4: COMMUNICATION AND NETWORKS 26 Green Communication Technology Management for Sustainability in Organization 26.1 Introduction 26.2 Sustainability of Green ICT 26.3 Going Green and Sustainability 26.4 ICT: Green and Sustainability 26.5 Benefits: Green IT Practices 26.6 Management Perspective: Green IT 26.7 Biodegradable Device Components 26.8 Conclusion References 27 A Means of Futuristic Communication: A Review 27.1 Introduction 27.1.1 Internet of Things 27.1.2 IoT and Cloud Computing 27.1.3 Fog Computing 27.1.4 Edge Computing 27.1.5 Comparative Analysis of Cloud, Fog and Edge Computing 27.2 Literature Review 27.3 IoT Simulators 27.4 IoT Test Beds 27.5 Conclusion and Future Scope References 28 Experimental Evaluation of Security and Privacy in GSM Network Using RTL-SDR 28.1 Introduction 28.2 Literature Review 28.3 Privacy in Telecommunication 28.4 A Take on User Privacy: GSM Exploitation 28.4.1 IMSI Catching 28.4.2 Eavesdropping 28.5 Experimental Setup 28.5.1 Hardware and Software 28.5.2 Implementation Algorithm and Procedure 28.6 Results and Analysis 28.7 Conclusion References 29 A Novel Consumer-Oriented Trust Model in E-Commerce 29.1 Introduction 29.2 Literature Surveys 29.3 Trust Pyramid 29.3.1 Trust Scenarios 29.3.2 Statistics of E-Commerce 29.4 Categorization of E-Commerce in Different Spheres 29.4.1 Hyperlocal 29.4.2 Travel and Hospitality 29.4.3 Business to Customer (B2C) 29.4.4 Education Technology 29.4.5 Payments and Wallets 29.4.6 Business to Business (B2B) 29.4.7 Mobility 29.4.8 Financial Technology 29.4.9 Health Technology 29.4.10 Social Commerce 29.4.11 Gaming 29.4.12 Logistics Technology 29.4.13 Online Classified and Services 29.5 Categorization of E-Commerce in Different Spheres and Investment in Last Five Years 29.6 Proposed Model 29.6.1 Different Components of Web Trust Model 29.6.2 A Novel Consumer-Oriented Trust Model 29.7 Conclusion References 30 Data Mining Approaches for Profitable Business Decisions 30.1 Introduction to Data Mining and Business Intelligence 30.2 Outline of Data Mining and BI 30.2.1 CRISP-DM 30.3 Leading Techniques used for Data Mining in BI 30.3.1 Classification Analysis 30.3.2 Clustering 30.3.3 Regression Analysis 30.3.4 Anomaly Detection 30.3.5 Induction Rule 30.3.6 Summarization 30.3.7 Sequential Patterns 30.3.8 Decision Tree 30.3.9 Neural Networks 30.3.10 Association Rule Mining 30.4 Some Implementations of Data Mining in Business 30.4.1 Banking and Finance 30.4.2 Relationship Management 30.4.3 Targeted Marketing 30.4.4 Fraud Detection 30.4.5 Manufacturing and Production 30.4.6 Market Basket Analysis 30.4.7 Propensity to Buy 30.4.8 Customer Profitability 30.4.9 Customer Attrition and Channel Optimization 30.5 Tabulated Attributes of Popular Data Mining Technique 30.5.1 Classification Analysis 30.5.2 Clustering 30.5.3 Anomaly or Outlier Detection 30.5.4 Regression Analysis 30.5.5 Induction Rule 30.5.6 Summarization 30.5.7 Sequential Pattern 30.5.8 Decision Tree 30.5.9 Neural Networks 30.5.10 Association Rule Learning 30.6 Conclusion References Part 5: LATEST TRENDS IN SUSTAINABLECOMPUTING TECHNIQUES 31 Survey on Data Deduplication Techniques for Securing Data in Cloud Computing Environment 31.1 Cloud Computing 31.1.1 Introduction 31.1.2 Cloud Computing Features 31.1.3 Services Provided by Cloud Computing 31.1.4 Types of Clouds Based on Deployment Model 31.1.5 Cloud Computing Security Challenges 31.2 Data Deduplication 31.2.1 Data Deduplication Introduction 31.2.2 Key Design Criteria for Deduplication Techniques 31.3 Literature Review 31.4 Assessment Rules of Secure Deduplication Plans 31.5 Open Security Problems and Difficulties 31.5.1 Data Ownership the Board 31.5.2 Achieving Semantically Secure Deduplication 31.5.3 POW in Decentralized Deduplication Structures 31.5.4 New Security Risks on Deduplication 31.6 Conclusion References 32 Procedural Music Generation 32.1 Introduction 32.2 Related Work 32.3 Experimental Setup 32.4 Methodology 32.5 Result 32.6 Conclusion References 33 Detecting Photoshopped Faces Using Deep Learning 33.1 Introduction 33.2 Related Literature 33.3 Dataset Generation 33.3.1 Generating Dataset of Fake Images 33.4 Methodolody 33.4.1 Details of the Training Procedure 33.5 Results 33.6 Conclusion 33.7 Future Scope References 34 A Review of SQL Injection Attack and Various Detection Approaches 34.1 Introduction 34.2 SQL Injection Attack and Its Types 34.3 Literature Survey 34.4 Summary 34.5 Conclusion References 35 Futuristic Communication Technologies 35.1 Introduction 35.2 Types of Communication Medium 35.2.1 Wired Medium 35.3 Types of Wired Connections 35.3.1 Implementation of Wired (Physical Mode) Technology 35.3.2 Limitations of Wired Technology 35.4 Wireless Communication 35.4.1 Types of Wireless Technology 35.4.2 Applications of Wireless Technology 35.4.3 Limitations of Wireless Technology 35.5 Optical Fiber Communication 35.5.1 Types of Optical Fiber Communication 35.5.2 Applications of Optical Fiber Communication 35.5.3 Limitations of Optical Fiber Communication 35.6 Radar Communication 35.6.1 Types of Radar Communication 35.6.2 Applications of RADAR Communication 35.6.3 Limitations of RADAR Communication 35.7 Green Communication Technology, Its Management and Its Sustainability 35.8 Space Air Ground Integrated Communication 35.9 Ubiquitous Communication 35.10 Network Planning, Management, Security 35.11 Cognitive Radio Communication 35.12 Types of Cognitive Radio Communication 35.13 Next Generation Communications and Applications 35.14 Smart Energy Management References 36 An Approach for Load Balancing Through Genetic Algorithm 36.1 Introduction 36.2 Motivation 36.3 Background and Related Technology 36.3.1 Load Balancing 36.3.2 Load Balancing Metrics 36.3.3 Classification of Load Balancing Algorithms 36.4 Related Work 36.5 Proposed Solution 36.5.1 Genetic Algorithm 36.5.2 Flowchart of Proposed Strategy 36.6 Experimental Setup and Results Analysis 36.6.1 Data Pre-Processing 36.6.2 Experimental Setup 36.6.3 Result Analysis 36.7 Conclusion References Index EULA