دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Ram K. Gupta (editor), Tuan Anh Nguyen (editor) سری: ISBN (شابک) : 103203324X, 9781032033242 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 576 [621] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Smart and Flexible Energy Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستگاه های انرژی هوشمند و انعطاف پذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جامعه علمی و صنایع در چند سال اخیر شاهد پیشرفت فوق العاده ای در تولید و ذخیره انرژی کارآمد بوده اند. با پیشرفت فناوری، دستگاههای جدید به منابع انرژی با کارایی بالا، قابل انعطاف، خم شدن و چرخش نیاز دارند که میتوانند در نسل بعدی لوازم الکترونیکی پوشیدنی، فشرده و قابل حمل برای کاربردهای پزشکی، نظامی و غیرنظامی ادغام شوند.</ p>
دستگاههای انرژی هوشمند و انعطافپذیر مواد، اصول اولیه کار، و پیشرفت پیشرفته دستگاههای انعطافپذیر مانند سلولهای سوختی، سلولهای خورشیدی، باتریها و ابرخازنها را بررسی میکند. با پوشش رویکردهای سنتز مواد انرژی پیشرفته در دستگاهها و ساختهای انعطافپذیر و مفاهیم اساسی طراحی دستگاههای انرژی انعطافپذیر مانند سلولهای سوختی، سلولهای خورشیدی، باتریها و ابرخازنها، تیمهای نویسنده برتر به بررسی چگونگی استفاده از مواد جدیدتر با خواص پیشرفته برای ساخت دستگاههای انرژی میپردازند. پاسخگویی به تقاضای آینده برای الکترونیک انعطاف پذیر.
ویژگی های اضافی عبارتند از:
این یک منبع ارزشمند برای دانشگاهیان و متخصصان صنعت است که در زمینه مواد انرژی، نانوتکنولوژی و دستگاههای انرژی کار میکنند.
The scientific community and industries have seen tremendous progress in efficient energy production and storage in the last few years. With the advancement in technology, new devices require high-performance, stretchable, bendable, twistable energy sources which can be integrated into next-generation wearable, compact, and portable electronics for medical, military, and civilian applications.
Smart and Flexible Energy Devices examines the materials, basic working principles, and state-of-the-art progress of flexible devices like fuel cells, solar cells, batteries, and supercapacitors. Covering synthesis approaches for advanced energy materials in flexible devices and fabrications and fundamental design concepts of flexible energy devices such as fuel cells, solar cells, batteries, and supercapacitors, top author teams explore how newer materials with advanced properties are used to fabricate energy devices to meet the future demand for flexible electronics.
Additional Features Include:
This is a valuable resource for academics and industry professionals working in the field of energy materials, nanotechnology, and energy devices.
Cover Half Title Title Page Copyright Page Contents Preface Editors Contributors 1. Smart and Flexible Energy Devices: Principles, Advances, and Opportunities 1.1 Introduction 1.2 Flexible supercapacitors 1.2.1 Flexible supercapacitors based on carbon 1.2.2 Flexible supercapacitors based on metal oxides and sulfides 1.2.3 Flexible supercapacitors based on nanocomposites 1.3 Flexible batteries 1.3.1 Flexible Li-ion and Li-sulfur batteries 1.3.2 Flexible metal-air batteries 1.4 Flexible proton exchange membrane fuel cells 1.5 Flexible solar cells 1.5.1 Dye-sensitized flexible solar cells 1.5.2 Perovskite-based flexible solar cells 1.6 Conclusion References 2. Innovation in Materials and Design for Flexible Energy Devices 2.1 Introduction 2.2 Materials 2.2.1 Inorganic nanomaterials 2.2.1.1 1D materials 2.2.1.2 2D materials 2.2.2 Organic materials 2.2.2.1 Polymers 2.2.2.2 Other organic materials 2.3 Structural requirements 2.3.1 Flexible substrates and membranes 2.3.2 Thickness of compound/active layer 2.4 Wearability assessments 2.4.1 Softness 2.4.2 Stretchability: The residual strain 2.5 Self-healing mechanism 2.5.1 Intrinsic self-healing polymers with reversible bonds 2.5.2 Self-healing through exhaustion of healing agents 2.6 Design of flexible energy devices 2.7 Flexible energy storage and conversion devices 2.7.1 Energy conversion devices 2.7.1.1 Nanogenerator (NGs) 2.7.1.2 Photovoltaic 2.7.1.3 Other flexible generators 2.7.2 Energy storage devices (ESDs) 2.7.2.1 Flexible batteries (FBs) 2.7.2.1.1 Li-ion flexible batteries (LiBs) 2.7.2.1.2 Other flexible batteries 2.7.2.2 Supercapacitors (SCs) 2.8 Configuration designs for flexible ESDs 2.8.1 1D configuration of ESDs 2.8.1.1 Fiber-type 2.8.1.2 Spring types 2.8.1.3 Spine type 2.8.2 2D configuration of ESDs 2.8.2.1 Layered sandwich configuration 2.8.2.2 Planar interdigital configuration 2.8.2.3 Other 2D novel configurations 2.8.3 3D configuration ESDs 2.8.3.1 Origami/Kirigami/honeycomb-based structures 2.9 Summary References 3. Basics and Architectural Aspects of Flexible Energy Devices 3.1 Introduction 3.2 Nanotechnology for flexible energy devices 3.3 Architectural concepts, structures, and materials for flexible solar cells 3.3.1 Flexible dye-sensitized solar cells FDSSCs 3.3.1.1 Structure design and basic concept 3.3.1.2 Flexible materials and fabrication process for FDSSCs 3.3.2 Quantum dot synthesized solar cell (QDSSCs) 3.3.2.1 Structure design and basic concept 3.3.2.2 Flexible materials and fabrication process for QDSSCs 3.3.3 Toward other flexible photovoltaic technologies 3.3.3.1 Inorganic materials based flexible solar cells 3.3.3.2 Organic materials based flexible solar cells 3.4 Architectural concepts, structures, and materials for flexible batteries 3.4.1 Lithium-ion batteries (LIBs) 3.4.1.1 Structure design and basic concept 3.4.1.2 Flexible materials for LIB structures 3.4.2 Zinc-ion batteries (ZIBs) 3.4.2.1 Structure design and basic concept 3.4.2.2 Flexible materials for ZIB structures 3.4.3 Flexible batteries advancement 3.5 Architectural concepts, structures, and materials for flexible supercapacitors 3.5.1 Structure design and basic concept 3.5.2 Flexible materials for SCs structures 3.6 Conclusion References 4. Characterization Techniques of Flexible Energy Devices 4.1 Introduction 4.2 Characterization techniques for flexible energy devices 4.2.1 Scanning electron microscopy 4.2.2 Transmission electron microscopy 4.2.3 X-ray diffraction 4.2.4 Cyclic voltammetry 4.2.5 Galvanostatic charge-discharge test 4.2.6 Electrochemical impedance spectroscopy 4.2.7 Atomic force microscopy 4.2.8 Secondary ion mass spectroscopy 4.2.9 Inductively coupled plasma-mass spectroscopy 4.2.10 Fourier transform infrared spectroscopy 4.3 Summary References 5. Micro- and Nanofibers-Based Flexible Energy Devices 5.1 Introduction of nanofibers and microfibers 5.1.1 Carbon fibers 5.1.2 Biopolymer fibers 5.1.3 Aramid fibers 5.1.4 Ceramic fibers 5.2 Flexible energy devices based on nanofibers 5.2.1 Inorganic fibers for flexible energy devices 5.2.2 Metallic fibers for energy devices 5.2.3 Carbon-based fibers for energy devices 5.2.4 Biobased fibers for energy devices 5.2.4.1 Cellulose-based fibers 5.2.4.2 Keratin and chitin fiber composites 5.3 Electrospun fibers for flexible energy devices 5.4 Conclusions References 6. 3D Printed Flexible Energy Devices 6.1 3D printing technologies 6.1.1 Direct ink writing 6.1.2 Fuse deposition modelling 6.1.3 Material jetting 6.1.4 Binder jetting 6.1.5 Directed energy deposition (DED) 6.2 Configuration of flexible energy device 6.2.1 Active materials 6.2.2 EES electrodes 6.2.3 Electrolyte and the solid-state devices 6.2.4 Configuration of EES devices 6.3 3D printed EES devices 6.3.1 3D printed electrodes 6.3.1.1 Carbon-based electrodes 6.3.1.2 Polymer-based electrodes 6.3.1.3 Others 6.3.2 3D printed electrolytes 6.3.3 3D printed device 6.4 Summary and outlook 6.4.1 Precision and resolution of 3D printing 6.4.2 New materials 6.4.3 Integration with multi-materials printing technology and the interface 6.4.4 4D printing References 7. Environmental Impact of Flexible Energy Devices 7.1 Introduction 7.2 Technical description of flexible devices 7.2.1 Energy conversion devices 7.2.1.1 Flexible solar cells 7.2.2 Energy storage devices 7.2.2.1 Flexible supercapacitors 7.2.2.2 Modern designs of lithium-ion batteries 7.3 Flexible materials environmental effects 7.3.1 Cadmium 7.3.2 Amorphous silicon (a-Si) 7.3.3 Copper indium gallium diselenide (CIGS) 7.3.4 Lead halide 7.3.5 Carbon-based nanomaterials 7.3.6 Tellurium and indium 7.3.7 Toxic flexible substrate 7.4 Processing routes and design strategies for safe and sustainable manufacturing 7.4.1 Toxic materials replacement 7.4.1.1 Lead-free perovskite 7.4.1.2 Indium 7.4.2 Improving processing routes 7.4.3 Recycling 7.4.4 Encapsulation 7.5 Conclusion References 8. Metal Oxide-Based Materials for Flexible and Portable Fuel Cells: Current Status and Future Prospects 8.1 Introduction 8.2 Current architecture and materials for flexible and portable fuel cells 8.3 Material challenges for flexible and portable fuel cells 8.4 Strategies to Tailor metal oxides for fuel cells 8.4.1 Morphological control 8.4.2 Phase structure engineering 8.4.3 Oxygen-vacancy control 8.4.4 Doping 8.4.5 Compositing with carbon/metal-based materials 8.5 Current status of metal oxide-based materials in flexible and portable fuel cells 8.5.1 Metal oxide-based catalysts 8.5.1.1 Simple metal oxides as catalysts 8.5.1.2 Perovskites as catalysts 8.5.1.3 Spinel oxides as catalysts 8.5.2 Metal oxide-based co-catalysts 8.5.3 Metal oxide-based catalyst supports 8.5.4 Metal oxide-based electrolytes/membranes 8.5.5 Metal oxide-based bipolar plates and substrates 8.5.6 Metal oxide-based current-collector 8.5.7 Metal oxide-based electrodes 8.6 Future avenues for metal oxide systems in empowering flexible and portable fuel cells 8.7 Acknowledgments References 9. Flexible Fuel Cells Based on Microbes 9.1 Introduction 9.2 Basics of MFCs 9.2.1 Instrumental bases 9.2.2 Two-compartment MFCs 9.2.3 Single-compartment MFCs 9.3 Flexible MFCs 9.3.1 Electrodes 9.3.1.1 Carbonaceous material 9.3.1.2 Bacterial cellulose 9.3.1.3 Graphene sheet 9.3.1.4 Polypyrrole (PPy) 9.3.2 Membrane 9.3.3 Microorganism 9.3.4 Fabrication 9.3.5 Applications 9.3.5.1 Energy harvesting 9.3.5.2 Treatment of wastewater 9.3.5.3 Sensors and portable power machines 9.4 Future aspect 9.4.1 Large-scale uses 9.4.2 Anode manipulation 9.4.3 Membrane-free MFC 9.5 Conclusion References 10. Flexible Silicon Photovoltaic Solar Cells 10.1 Introduction 10.2 Classification of flexible photovoltaic solar cells 10.2.1 Inorganic flexible photovoltaic solar cells 10.2.2 Organic flexible photovoltaic solar cells 10.2.3 Hybrid flexible photovoltaic solar cells 10.3 Flexible silicon (Si) photovoltaic solar cells 10.3.1 Flexible crystalline silicon solar cells 10.3.1.1 Recent progress in flexible crystalline silicon solar cells 10.3.2 Flexible thin-film amorphous silicon solar cells 10.3.2.1 Recent progress in flexible amorphous silicon solar cells 10.3.3 Silicon nanostructures for flexible solar cells 10.3.3.1 Silicon nanowire flexible solar cells 10.3.3.2 Silicon nanopyramid solar cells 10.3.3.3 Silicon nanoparticles for solar cells 10.3.3.4 Silicon ink-based solar cells 10.4 Outlook and conclusions Acknowledgement References 11. Flexible Solar Cells Based on Metal Oxides 11.1 Introduction 11.2 Substrate materials in flexible solar cells 11.3 Flexible dye-sensitized solar cells based on metal oxides 11.4 Flexible organic solar cells based on metal oxides 11.5 Flexible perovskite solar cells based on metal oxides 11.6 Other flexible solar cells based on metal oxides 11.7 Conclusion References 12. Inorganic Materials for Flexible Solar Cells 12.1 Introduction 12.2 Inorganic photoactive devices 12.3 Cu(In,Ga)Se2 (CIGS) solar cells 12.4 Cu2ZnSn(S,Se)4 solar cells 12.5 CdTe solar cells 12.6 Sb2Se3 solar cells 12.7 CsPb(I1-xBrx)3 solar cells 12.8 Environmental and economic concerns 12.9 Conclusion References 13. Efficient Metal Oxide-Based Flexible Perovskite Solar Cells 13.1 Introduction 13.2 Requirement for alternate energy resources 13.3 Metal oxide nanostructures 13.4 Metal oxide based flexible solar cells 13.5 Metal oxides based flexible perovskite solar cells 13.6 Recent advancement in metal oxide-based flexible perovskite solar cells 13.7 Summary and outlook Acknowledgments References 14. Flexible Solar Cells Based on Chalcogenides 14.1 Introduction 14.2 Merits of flexible solar cells 14.3 Progress and development on different substrates 14.3.1 CIGS 14.3.1.1 Polyimide 14.3.1.2 Metal foils 14.3.1.3 Ceramic and other materials 14.3.2 CdTe 14.3.2.1 Metal Foils 14.3.2.2 Polymer 14.3.2.3 Ceramics 14.3.3 CZTS/CZTS(Se) 14.3.3.1 Metal foils 14.3.3.2 UTG 14.3.3.3 Polymer and other materials 14.3.4 Sb2Se3 14.4 Fabrication issues and challenges with flexible solar cells 14.4.1 Crack initiation 14.4.2 Performance degradation under bending 14.4.3 Substrate choice 14.4.4 Electrodes issues 14.4.5 Stability and scalability issues 14.5 Future prospects and strategies for further advancements 14.5.1 Absorber optimization 14.5.2 New chalcogenide materials 14.5.3 Optimizing every layer of solar module 14.5.4 Material database and machine learning algorithms 14.5.5 Rigorous testing 14.5.6 Development of transparent/semitransparent solar cells 14.5.7 Integration with existing technologies 14.6 Conclusion References 15. Perovskite-Based Flexible Solar Cells 15.1 Introduction 15.2 Device structure and development of FPSCs 15.2.1 Device structure of FPSC 15.2.2 Development of FPSCs 15.3 FPSC fabrication methods 15.3.1 Laboratory scale fabrication methods 15.3.1.1 Spin coating Advantages Disadvantages 15.3.1.2 Thermal evaporation Advantages Disadvantages 15.3.2 Large scale fabrication methods 15.3.2.1 Inkjet printing Advantages Disadvantages 15.3.2.2 Blade coating Advantages Disadvantages 15.3.2.3 Spray coating Advantages Disadvantages 15.3.2.4 Slot-die coating Advantages Disadvantages 15.4 Materials for FPSCs 15.4.1 Perovskite absorber layer 15.4.2 Charge transport layers 15.4.2.1 Electron transport layer 15.4.2.2 Hole transport layer 15.4.3 Flexible substrates 15.4.3.1 Polymer (or plastic) substrates 15.4.3.2 Metal substrates 15.4.3.3 Fiber shaped PSCs 15.4.3.4 Other flexible substrates 15.4.4 Transparent conducting layer 15.4.5 Encapsulation 15.5 Recycling of FPSCs 15.6 Challenges and future perspectives 15.6.1 Environmental stability 15.6.2 Mechanical stability 15.6.3 High manufacturing cost 15.6.4 Large-area fabrication 15.6.5 Toxicity 15.7 Applications of FPSCs 15.8 Conclusion References 16. Quantum Dots Based Flexible Solar Cells 16.1 Introduction 16.2 Theoretical background of QDs 16.2.1 Quantum size effect 16.2.2 Multiple exciton generation 16.2.3 Ultrafast charge transfer 16.3 Synthesis and characterization of QDs 16.3.1 Colloidal synthesis 16.3.2 Surface engineering 16.4 QDs based flexible heterojunction solar cell 16.5 QD based flexible sensitized solar cells 16.6 QDs based flexible perovskite solar cells 16.7 Flexible QD-silicon hybrid solar cells 16.7 Conclusion References 17. A Method of Strategic Evaluation for Perovskite-Based Flexible Solar Cells 17.1 Introduction 17.2 Perovskite-based solar cells' working mechanism 17.2.1 The future of perovskite-based solar cells 17.3 Methodology 17.3.1 AHP analysis 17.4 Conclusions References 18. Flexible Batteries Based on Li-Ion 18.1 Introduction 18.2 Flexible electrodes 18.2.1 Flexible anodes 18.2.1.1 Carbon materials 18.2.1.2 Mxenes 18.2.2 Flexible cathodes 18.3 Flexible electrolytes 18.4 Battery structures 18.5 Fabrication of FLIBs 18.6 Conclusion References 19. Flexible Na-Ion Batteries 19.1 Introduction 19.2 Flexible Na-ion batteries 19.2.1 Configurations 19.2.2 Electrolytes 19.2.3 Electrode materials 19.2.4 Separators 19.3 Conclusion References 20. Flexible Batteries Based on K-ion 20.1 Introduction 20.2 Working principle 20.3 Influence of electrolytes and solid electrolyte interphase in K-ion based batteries 20.3.1 Thermodynamic understanding of electrolyte reduction 20.3.2 Comparison of K-ion SEI and Li-/Na-ion SEI 20.3.3 Effects of electrolyte selection on SEI 20.3.4 Mechanical stability of SEI 20.4 Anode materials for K-ion based flexible batteries 20.4.1 Carbon materials 20.4.2 Phosphorus compounds 20.4.3 Titanium-based compounds 20.4.4 Alloying-type compounds 20.4.5 Organic compounds 20.5 Cathode materials for K-ion based flexible batteries 20.5.1 Hexacyanometallate 20.5.2 Layered metal oxides 20.5.3 Polyanionic compounds 20.5.4 Organic materials 20.6 Summary and future outlooks References 21. Flexible Batteries Based on Zn-Ion 21.1 Introduction 21.2 Zinc-ion batteries and mechanisms 21.3 Flexible zinc-ion batteries 21.3.1 Polymer electrolytes 21.3.1.1 PEO and derivatives 21.3.1.2 PVA and derivatives 21.3.1.3 PAM and derivatives 21.3.2 Functionalities 21.3.3 Flexible device constructions (electrodes) 21.4 Current challenges and perspectives 21.4.1 Voltage issue 21.4.2 Structural enhancement 21.4.3 Multifunctionalities 21.5 Conclusions Reference 22. Fabrication Techniques for Wearable Batteries 22.1 Introduction 22.2 Wearable batteries 22.3 Electrode fabrication approaches 22.3.1 Substrate-enabled techniques 22.3.1.1 Chemical vapor deposition 22.3.1.2 Hydrothermal deposition 22.3.1.3 Electrochemical deposition 22.3.1.4 Electrospinning and electrospraying 22.3.1.5 Solution dip coating 22.3.1.6 Spray painting 22.3.1.7 Biscrolling 22.3.2 Substrateless techniques 22.3.2.1 Electrospinning 22.3.2.2 Wet spinning 22.3.2.3 Melt spinning 22.3.2.4 3D extrusion printing 22.4 Structures and approaches for unification of electrodes 22.4.1 Winding 22.4.2 Twisting 22.4.3 Coaxial assembly 22.5 Integration of fiber electrodes/batteries into textiles for wearable applications 22.5.1 Weaving 22.5.2 Knitting 22.6 Conclusion References 23. Carbon-Based Advanced Flexible Supercapacitors 23.1 Introduction 23.2 Carbon-based materials for FSCs 23.2.1 Graphene 23.2.2 Carbon nanotubes 23.2.3 Bio-based carbon 23.3 Synthesis of carbon-based materials 23.4 Mechanisms of energy storage in supercapacitors 23.4.1 Electrochemical double-layer capacitors 23.4.2 Pseudo-capacitors 23.4.3 Hybrid capacitors 23.5 Carbon-based flexible supercapacitors 23.5.1 Graphene-based flexible supercapacitors 23.5.2 CNT-based flexible supercapacitors 23.5.3 Bio-based FSCs 23.6 Conclusion References 24. 2D Materials for Flexible Supercapacitors 24.1 Introduction 24.2 Classification, methods, and merits 24.2.1 Graphene and its carbonaceous analogs 24.2.1 TMCs and TMDs 24.2.3 MXenes 24.2.4 2D MOFs 24.2.5 Other 2D/layered materials 24.2.5 Hybrid 2D nanostructures 24.2.6 Configurations of FSCs 24.3 Challenges and prospects References 25. Flexible Supercapacitors Based on Metal Oxides 25.1 Introduction 25.2 Key characteristics of flexible supercapacitors 25.3 Equations of super-capacitance measurement 25.4 Metal oxide based-flexible supercapacitors 25.4.1 Drawbacks of MOs for supercapacitors 25.4.2 How to overcome the drawbacks? 25.4.3 Various electrolytes in supercapacitors 25.4.4 Various metal oxides in supercapacitors 25.4.4.1 Ruthenium oxide-based supercapacitors 25.4.4.2 Manganese-oxide-based supercapacitors 25.4.4.3 Other metal oxide-based supercapacitors 25.4.4 Transparent supercapacitors 25.5 Conclusions Acknowledgments References 26. Recent Advances in Transition Metal Chalcogenides for Flexible Supercapacitors 26.1 Introduction 26.2 Substrates for flexible supercapacitors 26.3 Metal chalcogenides and their categories 26.3.1 Unary-metal chalcogenides 26.3.2 Binary or ternary metal chalcogenide 26.4 How does the electrode system work? 26.5 Recent developments in the metal chalcogenide-based Flexible Supercapacitors 26.6 Conclusion Acknowledgment References 27. MOFs-Derived Metal Oxides-Based Compounds for Flexible Supercapacitors 27.1 Introduction 27.2 MOFs-derived metal oxides for flexible supercapacitors 27.2.1 MOFs-derived binary metal oxides 27.2.1.1 Co-oxides materials 27.2.1.2 Fe-oxides materials 27.2.1.3 Ce-oxides materials 27.2.2 MOFs-derived ternary or TMMOs 27.2.2.1 Porous ZnCo2O4 material 27.2.2.2 MnCo2O4 materials 27.2.2.3 NixCo3-xO4 material 27.2.3 MOFs-derived metal oxide/composite 27.3 Conclusions References 28. Textile-Based Flexible Supercapacitors 28.1 Introduction 28.2 Classification of supercapacitor based on storage mechanism 28.2.1 Electrical double layer capacitors 28.2.2 Pseudocapacitors 28.2.3 Hybrid supercapacitors 28.3 Components of supercapacitors 28.3.1 Electrode 28.3.2 Electrolyte 28.3.3 Separator 28.3.4 Current collector 28.4 Textile-based supercapacitors 28.4.1 Fiber-based supercapacitors 28.4.1.1 Parallel fiber structure 28.4.1.2 Twisted fiber structure 28.4.1.3 Coaxial fiber structure 28.4.2 Fabric supercapacitors 28.5 Fiber-based electrodes 28.5.1 Conventional fibers based fiber electrodes 28.5.2 Metal yarns/wires/threads-based fiber electrodes 28.5.3 Graphene yarn-based electrodes 28.5.4 CNT yarn-based fiber electrodes 28.5.5 Hybrid fiber-based supercapacitor electrodes 28.6 Fabric-based electrodes for supercapacitors 28.6.1 Metal mesh-based electrodes 28.6.2 Carbon fabric-based electrodes 28.6.3 Conventional fabric-based electrodes 28.7 Applications 28.8 Conclusion and future perspective Reference 29. Current Development and Challenges in Textile-Based Flexible Supercapacitors 29.1 Introduction 29.2 Classification and properties of textile fabrics 29.2.1 Classification of textile fabrics 29.2.1.1 Man-made fibers 29.2.1.2 Natural fibers 29.2.2 Properties of textile fibers for supercapacitor applications 29.3 Textile based flexible supercapacitors (TFSCs) 29.4 Design strategies for TFSCs application 29.5 Conclusion and future perspective References 30. Flexible Supercapacitors Based on Nanocomposites 30.1 Introduction 30.2 Carbon nanomaterial-incorporated nanocomposites for FSCs 30.2.1 Carbon nanomaterials 30.2.2 Carbon-metal oxide nanocomposites 30.2.3 Carbon-conducting polymer nanocomposites 30.2.4 Carbon-mxene nanocomposites 30.3 Device configurations of nanocomposite-based FSCs 30.3.1 One-dimensional fiber-shaped FSCs 30.3.2 Two-dimensional film-shaped FSCs 30.3.3 Three-dimensional structural FSCs 30.4 Practical applications of nanocomposite-based FSCs 30.4.1 FSCs for wearable electronic devices 30.4.2 FSCs for flexible electronic devices 30.5 Summary and perspectives Acknowledgments References 31. Textile-Based Flexible Nanogenerators 31.1 Introduction 31.2 Piezoelectric nanogenerators 31.3 Textile-based piezoelectric nanogenerators 31.4 Pyroelectric and hybrid nanogenerators 31.5 Triboelectric nanogenerators (TENG) 31.6 Conclusion References Index