دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Fatma Pakdil
سری:
ISBN (شابک) : 303040708X, 9783030407087
ناشر: Palgrave Macmillan
سال نشر: 2020
تعداد صفحات: 520
[506]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Six Sigma for Students: A Problem-Solving Methodology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شش سیگما برای دانش آموزان: یک روش حل مسئله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی مکانیسمهای اساسی فلسفه شش سیگما را پوشش میدهد و در عین حال نشان میدهد که چگونه این رویکرد در حل مشکلاتی که بر تغییرپذیری و کیفیت فرآیندها و نتایج در تنظیمات کسبوکار تأثیر میگذارند، استفاده میشود. علاوه بر این، به خوانندگان می آموزد که چگونه یک دیدگاه آماری را در فرآیندهای حل مسئله و تصمیم گیری ادغام کنند. بخش اول پسزمینهای را ارائه میکند و متدولوژی شش سیگما را معرفی میکند، در حالی که بخش دوم بر جزئیات فرآیند DMAIC و ابزارهای مورد استفاده در هر مرحله از DMAIC تمرکز دارد. رویکرد دانش آموز محور مبتنی بر اهداف یادگیری، مثال های حل شده، سوالات تمرین و بحث برای کسانی که شش سیگما را مطالعه می کنند ایده آل است.
This textbook covers the fundamental mechanisms of the Six Sigma philosophy, while showing how this approach is used in solving problems that affect the variability and quality of processes and outcomes in business settings. Further, it teaches readers how to integrate a statistical perspective into problem solving and decision-making processes. Part I provides foundational background and introduces the Six Sigma methodology while Part II focuses on the details of DMAIC process and tools used in each phase of DMAIC. The student-centered approach based on learning objectives, solved examples, practice and discussion questions is ideal for those studying Six Sigma.
Preface Acknowledgments Contents Abbreviations List of Figures List of Images List of Tables I: Organization of Six Sigma 1: Overview of Quality and Six Sigma 1.1 Introduction 1.2 The Six Sigma Philosophy 1.3 Quality Definitions 1.3.1 The Product-Based Approach 1.3.2 The Manufacturing-Based Approach 1.3.3 The Value-Based Approach 1.3.4 The Customer-Based Approach 1.4 Quality Gurus and Thinkers 1.4.1 Walter Shewhart 1.4.2 W. Edwards Deming 1.4.3 Joseph M. Juran 1.4.4 Armand V. Feigenbaum 1.4.5 Kaoru Ishikawa 1.4.6 Taiichi Ohno 1.4.7 Dr. Shigeo Shingo 1.4.8 Genichi Taguchi 1.4.9 Philip B. Crosby 1.4.10 David Garvin 1.4.11 Douglas Montgomery 1.5 The Historical Background of Six Sigma 1.6 Standards in Six Sigma 1.7 Quality Costs 1.7.1 Quality Cost Definition 1.7.2 Quality Cost Categories 1.7.3 Performance Metrics in Quality Costs References 2: Organization for Six Sigma 2.1 Introduction 2.2 Six Sigma Leaders’ Approaches and Organizational Vision 2.3 Roles and Responsibilities in Six Sigma Organization 2.3.1 Executive Committee 2.3.2 Project Champions 2.3.3 Deployment Manager 2.3.4 Process Owners 2.3.5 Master Black Belts 2.3.6 Black Belts 2.3.7 Green Belts 2.3.8 Finance Representatives 2.3.9 Team Members References 3: Cultural Considerations for Effective Six Sigma Teams 3.1 Introduction 3.2 Different Faces of Culture 3.3 Organizational Culture 3.4 Professional Culture 3.5 Societal Culture 3.6 Cultural Change 3.6.1 Changing Organizational Culture 3.6.2 Diagnosing Potential Organizational Culture to Implement Six Sigma References II: Six Sigma Process: DMAIC 4: Define Phase: D Is for Define 4.1 Introduction 4.2 Process Analysis and Documentation Tools 4.2.1 Transformation Process 4.2.2 Value Stream Analysis and Map 4.2.3 Flow Chart 4.2.4 SIPOC Diagram 4.2.5 Swim Lane 4.2.6 Spaghetti Diagram 4.3 Stakeholder Analysis 4.4 Project Prioritization and Selection 4.4.1 Qualitative Approaches 4.4.2 Quantitative Approaches 4.5 Project Charter 4.5.1 Problem Statement 4.5.2 Goal Statement 4.5.3 Project Scope 4.5.4 Project Metrics 4.5.5 Project CTQ Characteristics 4.5.6 Project Deliverables 4.6 Project Planning 4.7 Quality Function Deployment References Further Reading 5: Measure Phase: M Is for Measure 5.1 Introduction 5.2 What Are Data? 5.3 Data Collection Plans 5.4 Types of Variables 5.5 Types of Sampling 5.5.1 Probability Sampling Methods 5.5.1.1 Simple Random Sampling 5.5.1.2 Stratified Random Sampling 5.5.1.3 Systematic Sampling 5.5.1.4 Cluster Sampling 5.5.2 Non-probability Sampling Methods 5.5.2.1 Quota Sampling 5.5.2.2 Snowball Sampling 5.5.2.3 Convenience Sampling 5.5.2.4 Purposive Sampling 5.6 Measuring Limits of the CTQ Characteristics 5.7 Six Sigma Measurements References Further Reading 6: Measurement System Analysis: Gage R&R Analysis 6.1 Introduction 6.2 Gage R&R Analysis References 7: Analyze Phase: A Is for Analyze 7.1 Introduction 7.2 Descriptive Statistics 7.2.1 Measures of Central Tendency 7.2.1.1 Mean 7.2.1.2 Mode 7.2.1.3 Median 7.2.2 Measures of Variability (Dispersion) 7.2.2.1 Range 7.2.2.2 Standard Deviation 7.2.2.3 Variance 7.3 Other Descriptive Measures 7.3.1 Quartiles 7.3.2 The Five-Measure Summary 7.4 The Shape of Distribution 7.5 Types of Variation 7.6 Statistical Distributions 7.6.1 Random Variables 7.6.1.1 Discrete Random Variables 7.6.1.2 Continuous Random Variables 7.6.2 Cumulative Distribution Function (CDF) 7.6.3 Discrete Distributions 7.6.3.1 Bernoulli Distribution 7.6.3.2 Binomial Distribution 7.6.3.3 Hypergeometric Distribution 7.6.3.4 Geometric Distribution 7.6.3.5 Poisson Distribution 7.6.4 Continuous Distributions 7.6.4.1 Uniform Distribution 7.6.4.2 Exponential Distribution 7.6.4.3 Triangular Distribution 7.6.4.4 Normal Distribution (Gaussian Distribution) 7.6.4.5 Weibull Distribution 7.7 Inferential Statistics: Fundamentals of Inferential Statistics 7.7.1 Sampling Distribution 7.7.2 Properties of Sampling Distributions 7.7.2.1 First Property: The Standard Error of the Mean 7.7.2.2 Second Property: The Central Limit Theorem 7.7.3 Estimation 7.7.3.1 Point Estimates 7.8 Inferential Statistics: Interval Estimation for a Single Population 7.8.1 Interval Estimates 7.8.2 Confidence Interval Estimation 7.8.2.1 Confidence Interval Estimation for the Mean Confidence Interval for the Mean (σ Is Known) One-Sided Confidence Interval for the Mean (σ Is Known) Confidence Interval for the Mean (σ Is Unknown, Large Sample) Confidence Interval for the Mean (σ Is Unknown, Small Sample) 7.8.2.2 Confidence Interval Estimation for the Variance and Standard Deviation 7.8.2.3 Confidence Interval Estimation for the Proportion (Large Sample) 7.8.3 Tolerance Interval Estimation 7.8.4 Prediction Interval Estimation 7.9 Inferential Statistics: Hypothesis Testing for a Single Population 7.9.1 Concepts and Terminology of Hypothesis Testing 7.9.1.1 Assumptions and Conditions 7.9.1.2 Formulation of Null and Alternative Hypotheses 7.9.1.3 Decisions and Errors in a Hypothesis Test 7.9.1.4 Test Statistics and Rejection Regions 7.9.1.5 Reporting Test Results: p-Values 7.9.2 Hypothesis Tests for a Single Population 7.9.3 Testing of the Population Mean 7.9.3.1 Tests of the Mean of a Normal Distribution (Population Standard Deviation Known) 7.9.3.2 Tests of the Mean of a Normal Distribution (Population Standard Deviation Unknown) 7.9.4 Testing the Population Variance of a Normal Distribution 7.9.5 Testing the Population Proportion (Large Samples) 7.10 Inferential Statistics: Comparing Two Populations 7.10.1 Connection Between Hypothesis Test and Confidence Interval Estimation 7.10.2 Comparing Two Population Means: Independent Samples 7.10.2.1 Population Variances Unknown and Assumed to Be Equal 7.10.2.2 Population Variances Unknown and Assumed to Be Unequal 7.10.3 Comparing Two Population Means: Dependent (Paired) Samples 7.10.4 Comparing Two Normally Distributed Population Variances 7.10.5 Comparing Two Population Proportions (Large Samples) 7.11 Correlation Analysis 7.12 Regression Analysis 7.13 ANOVA – Analysis of Variance 7.13.1 One-Way ANOVA 7.14 Process Capability Analysis 7.15 Taguchi’s Loss Function 7.15.1 Nominal Is the Best 7.15.2 Smaller Is the Best 7.15.3 Larger Is the Best References 8: Analyze Phase: Other Data Analysis Tools 8.1 Introduction 8.2 Seven Old Tools 8.2.1 Check Sheet 8.2.2 Histogram 8.2.3 Fishbone Diagram Cause-and-Effect Diagram 8.2.4 Pareto Analysis and Diagram 8.2.5 Scatter Diagram 8.2.6 Stratification Analysis 8.2.7 Control Charts 8.3 Seven New Tools 8.3.1 Affinity Diagram 8.3.2 Systematic Diagram 8.3.3 Arrow Diagram 8.3.4 Relations Diagram 8.3.5 Matrix Diagram 8.3.6 Matrix Data Analysis 8.3.7 Process Decision Program Chart (PDPC) 8.4 Other Tools 8.4.1 Brainstorming 8.4.2 5 Whys Analysis 8.4.3 Dot Plot 8.4.4 Run Chart 8.4.5 Box-and-Whisker Plot 8.4.6 Probability Plot 8.4.7 Bar Chart 8.4.8 Line Graph 8.4.9 Stem-and-Leaf Plot References 9: Control Charts 9.1 Introduction 9.2 Elements of Control Charts 9.3 Implementation of Control Charts 9.4 Decision-Making on Control Charts 9.5 Control Charts for Variables 9.5.1 Charts 9.5.2 Charts 9.5.2.1 The and S Charts When the Sample Size Is Constant 9.5.2.2 The and S Charts When the Sample Size Is Not Constant 9.5.3 X − MR Charts 9.6 Control Charts for Attributes 9.6.1 Control Charts for Fraction Nonconforming 9.6.1.1 P Charts 9.6.1.2 np Charts 9.6.2 Control Charts for Nonconformities 9.6.2.1 c Charts 9.6.2.2 u Charts References 10: Improve Phase: I Is for Improve 10.1 Introduction 10.2 Experimental Design – Design of Experiment (DOE) 10.2.1 DOE Steps 10.2.2 DOE Methods 10.2.2.1 Single Factor Experiments 10.2.2.2 Two-Factor Factorial Designs 10.2.2.3 Full Factorial Experiments 10.2.2.4 Fractional Factorial Experiment 10.2.2.5 Screening Experiments 10.2.2.6 Response Surface Designs 10.3 Simulation 10.3.1 Introduction 10.3.2 What Is Simulation? 10.3.3 Types of Simulation Models 10.3.4 How Are Simulations Performed? 10.3.4.1 Simulation by Hand (Manual Simulation) 10.3.4.2 Simulation with General Purpose Languages 10.3.4.3 Special Purpose Simulation Languages 10.3.5 Concepts of the Simulation Model 10.3.5.1 The System 10.3.5.2 Steps of Building a Simulation Model 10.3.6 Simulation Modeling Features 10.3.6.1 Discrete Event Simulation (DES) 10.3.6.2 Start and Stop of Simulation 10.3.6.3 Queueing Theory 10.3.6.4 Performance Measures 10.3.7 Performing an Event-Driven Simulation 10.3.7.1 Simulation Clock and Time Advancement Mechanism 10.3.7.2 Event-Driven Simulation by Hand 10.3.7.3 Randomness in Simulation 10.4 Lean Philosophy and Principles 10.5 Failure Modes and Effects Analysis References Further Readings 11: Control Phase: C Is for Control 11.1 Introduction 11.2 Steps in the Control Phase 11.2.1 Implementing Ongoing Measurements 11.2.2 Standardization of the Solutions 11.2.3 Monitoring the Improvements 11.2.4 Project Closure 11.3 Tools in Control Phase 11.3.1 Statistical Process Control 11.3.2 Control Plans References Appendix Index