دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kenneth Maiese
سری:
ISBN (شابک) : 0128224673, 9780128224670
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 300
[280]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Sirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست شناسی سیرتوین در سرطان و بیماری متابولیک: مسیرهای سلولی برای کشف بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زیست شناسی Sirtuin در سرطان و بیماری متابولیک: مسیرهای سلولی برای کشف بالینی یک دیدگاه متقاعد کننده و قابل تامل برای بررسی زیست شناسی جذاب سیرتوئین ها ارائه می دهد که سرطان را به هم مرتبط می کند. و بیماری متابولیک با هم و بستری حیاتی برای توسعه استراتژیهای درمانی جدید مبتنی بر سیرتوئین برای درمان موثر سرطان و اختلالات متابولیک با دقت به منظور به حداقل رساندن هرگونه پیامد بالقوه مضر بالینی فراهم میکند. یک چشم انداز هیجان انگیز برای توسعه درمان های نوآورانه برای سرطان و اختلالات متابولیک شامل سیرتوئین ها است. سیرتوئین ها هیستون داستیلازهایی هستند که نقش پیچیده ای در شروع و توسعه سرطان و بیماری متابولیک دارند. این مرجع نوآورانه با پیادهسازی فرمت طب ترجمهای، توانایی سیرتوئینها را برای نظارت بر مسیرهای حیاتی که شامل نگهداری سلولهای بنیادی، تکثیر سلولی، هموستاز متابولیک، آپوپتوز و اتوفاژی است که میتواند بر اختلال عملکرد سلولی و رشد سلولی کنترلنشده که در طول سرطان و متابولیک رخ میدهد تأثیر بگذارد، برجسته میکند. بیماری. هر فصل یک چشم انداز شهودی از پیشرفت ها در کاربرد مسیرهای سیرتوئین برای سرطان و بیماری های متابولیک ارائه می دهد که به منبعی برای مخاطبان وسیعی از دانشمندان، پزشکان، کارشناسان صنعت داروسازی، متخصصان تغذیه و دانشجویان تبدیل خواهد شد.
Sirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery offers a compelling and thought-provoking perspective for the examination of the intriguing biology of sirtuins that ties cancer and metabolic disease together and provides a critical platform for the development of sirtuin-based novel therapeutic strategies to effectively treat cancer and metabolic disorders with precision in order to minimize any potentially detrimental clinical outcomes. An exciting prospect for the development of innovative therapeutics for cancer and metabolic disorders involves sirtuins. Sirtuins are histone deacetylases that have an intricate role in the onset and development of cancer and metabolic disease. Implementing a translational medicine format, this innovative reference highlights the ability of sirtuins to oversee critical pathways that involve stem cell maintenance, cellular proliferation, metabolic homeostasis, apoptosis, and autophagy that can impact cellular dysfunction and unchecked cellular growth that can occur during cancer and metabolic disease. Each chapter offers an intuitive perspective of advances on the application of sirtuin pathways for cancer and metabolic disease that will be become a "go-to" resource for a broad audience of scientists, physicians, pharmaceutical industry experts, nutritionists, and students.
Title-page_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Sirtuin Biology in Cancer and Metabolic Disease Copyright_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Copyright Dedication_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Dedication Contents_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Contents List-of-contributors_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease List of contributors About-the-editor_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease About the editor Preface_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Preface Acknowledgment_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Acknowledgment Chapter-1---Sirtuins-in-metabolic-disease--innovat_2021_Sirtuin-Biology-in-C 1 Sirtuins in metabolic disease: innovative therapeutic strategies with SIRT1, AMPK, mTOR, and nicotinamide Abbreviations 1.1 Noncommunicable diseases 1.2 Metabolic disorders 1.3 Novel therapeutic strategies with sirtuins for metabolic disease 1.4 Silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) 1.5 SIRT1, metabolic function, and obesity 1.6 SIRT1 and AMP-activated protein kinase 1.7 SIRT1, mTOR, and metabolic disease 1.8 SIRT1, nicotinamide, and cellular metabolism 1.9 Future considerations Acknowledgments References Chapter-2---Sirtuins-in-metabolic-and-epige_2021_Sirtuin-Biology-in-Cancer-a 2 Sirtuins in metabolic and epigenetic regulation of stem cells 2.1 Introduction 2.2 Stem cells and sirtuins 2.3 SIRT1 in stem cell biology 2.3.1 SIRT1 is important for normal embryogenesis and animal development 2.3.2 SIRT1 maintains pluripotent ESCs through multilevel mechanisms 2.3.3 SIRT1 is important for the maintenance of diverse ASC pools 2.3.4 SIRT1 is important in maintaining/promoting stemness and survival of CSCs 2.4 SIRT2 in stem cell biology 2.4.1 SIRT2 promotes differentiation of ESCs in vitro 2.4.2 SIRT2 promotes survival of CSCs 2.5 SIRT3 in stem cell biology 2.5.1 SIRT3 maintains the pool and regenerative capacity of HSCs during aging 2.6 SIRT6 in stem cell biology 2.6.1 SIRT6 epigenetically promotes proper lineage commitment of ESCs and animal development 2.6.2 SIRT6 controls regeneration and stress resistance in HSCs and mesenchymal stem cells 2.6.3 SIRT6 suppresses stemness of CSCs 2.7 SIRT7 in stem cell biology 2.7.1 SIRT7 regulates embryogenesis and life span through maintenance of genome stability 2.7.2 SIRT7 regulates quiescence and regenerative capacity of HSCs 2.8 Concluding remarks and future perspectives References Chapter-3---Sirtuins-and-metabolic-regulati_2021_Sirtuin-Biology-in-Cancer-a 3 Sirtuins and metabolic regulation: food and supplementation 3.1 Introduction 3.2 Tissue-specific sirtuin-modulated metabolic regulation 3.2.1 Liver 3.2.2 Adipose tissue 3.2.3 Heart and skeletal muscle 3.2.4 Kidneys 3.2.5 Pancreas 3.2.6 Brain 3.3 Nutrition as a therapeutic model for sirtuin regulation 3.3.1 Polyphenols 3.4 Resveratrol 3.5 Gallic acid 3.6 Nonresveratrol related sirtuin activators 3.7 Food and sirtuins 3.7.1 Mediterranean diet 3.7.2 Berberin 3.7.3 Green cardamom 3.7.4 Cocoa 3.7.5 Indole-3-carbinol 3.7.6 Xanthigen 3.8 Conclusion References Chapter-4---Sirtuins-in-diabetes-mellitus-_2021_Sirtuin-Biology-in-Cancer-an 4 Sirtuins in diabetes mellitus and diabetic kidney disease 4.1 Introduction Part 1 4.2 Sirtuin 1 (SIRT1) in normal physiology 4.2.1 Major roles of SIRT1 in glucose metabolism 4.2.2 Major roles of SIRT1 in lipid metabolism 4.2.3 Major roles of SIRT3 in glucose metabolism and lipid metabolism 4.2.4 Major roles of SIRT4 in glucose and lipid metabolism Part 2 4.3 Diabetes mellitus and sirtuins 4.3.1 The roles of sirtuins in the pathogenesis of diabetes mellitus 4.3.2 Sirtuins and diabetic kidney disease 4.3.2.1 What are the effects of SIRT6 and SIRT7 in kidney? 4.3.3 The roles of SIRT1 in the glomerulus in diabetic kidney disease 4.3.3.1 Results from animal models of diabetes mellitus 4.3.3.2 Results from cell culture studies 4.3.4 The roles of SIRT1 in the tubulointerstitium in diabetic kidney disease 4.3.4.1 Results from animal models of diabetes mellitus 4.3.4.2 Results from cell culture studies 4.3.5 The roles of SIRT1 and autophagy in diabetes mellitus and diabetic kidney disease 4.3.6 The roles of SIRT1 and adenosine monophosphate-activated protein kinase pathway in diabetic kidney disease 4.3.7 The roles of SIRT1 and mTOR pathway in diabetic kidney disease 4.4 Hypertension and sirtuins 4.5 Novel treatment options in diabetes mellitus and diabetic kidney disease 4.6 Conclusion and future perspectives References Chapter-5---Sirtuins-and-mitochondria_2021_Sirtuin-Biology-in-Cancer-and-Met 5 Sirtuins and mitochondrial dysfunction 5.1 Sirtuins are nutrient sensors 5.2 Sirtuins and mitochondrial biogenesis 5.3 Sirtuins and mitochondrial metabolism 5.4 Sirtuins and mitochondrial dysfunction in human diseases 5.4.1 Diabetes and obesity 5.4.2 Cardiovascular diseases 5.4.3 Renal disease 5.4.4 Neurodegeneration 5.4.5 Aging 5.4.6 Tumorigenesis 5.5 Feasible clinical targets: posttranslational modifications of sirtuins regulate mitochondrial function Acknowledgments References Chapter-6---Sirtuins-in-immunomet_2021_Sirtuin-Biology-in-Cancer-and-Metabol 6 Sirtuins in immunometabolism 6.1 Brief introduction of immunometabolism 6.2 Role of sirtuins in immunometabolism 6.2.1 SIRT1 6.2.1.1 SIRT1 in macrophage 6.2.1.2 SIRT1 in myeloid-derived suppressor cells 6.2.1.3 SIRT1 in dendritic cells 6.2.1.4 SIRT1 in T cells 6.2.2 SIRT2 6.2.3 SIRT3, SIRT4, and SIRT5 6.2.4 SIRT6 6.2.5 SIRT7 6.3 Conclusion and future considerations References Chapter-7---Mitochondrial-sirtuins-at-the-crossr_2021_Sirtuin-Biology-in-Can 7 Mitochondrial sirtuins at the crossroads of energy metabolism and oncogenic transformation Abbreviations 7.1 Introduction—advantages of possessing mitochondria 7.2 Mitochondrial sirtuins 7.3 Lipoylation of multienzymatic complexes is essential for mitochondrial metabolism 7.4 Alternative lipoylation and its metabolic consequences 7.5 Regulation of pyruvate dehydrogenase complex by mitochondrial sirtuins 7.6 Alpha ketoglutarate dehydrogenase complex regulates gene expression 7.7 Fluctuations of the intracellular concentration of organic acids has far-reaching implications 7.8 Ketogenic enzymes ACAT1 and HMGCS2 as substrates for Sirt3 and Sirt5 7.9 Antagonistic roles of mitochondrial sirtuins in fed and fasted state 7.10 The interplay between Sirt3 and isocitrate dehydrogenase in cancer cells 7.11 Tumor-suppressing and tumor-promoting activities of sirtuins in the context of glutamine and glucose metabolism 7.12 Sirtuins regulate iron–sulfur cluster assemblage 7.13 Mitochondrial fatty acid synthesis is linked to Fe–S cluster assembly and protein lipoylation—implications for cancer ... 7.14 Consequences of Fe–S cluster defects in cancer cells 7.15 Deoxyribonucleotide synthesis—toward the as yet unexplored areas of sirtuin research 7.16 Perspectives—evolutionary implications and new directions in cancer treatment References Chapter-8---Sirtuins-and-the-hallmar_2021_Sirtuin-Biology-in-Cancer-and-Meta 8 Sirtuins and the hallmarks of cancer 8.1 Introduction 8.2 Sirtuins in sustaining proliferative signaling and evading growth suppressors 8.3 Sirtuins and resisting cell death 8.4 Sirtuins in tumor-promoting inflammation and immune system function 8.5 Sirtuins in angiogenesis 8.6 Sirtuins in invasion and metastasis 8.7 Sirtuins in genome instability and replicative immortality 8.8 Sirtuins in reprogramming energy metabolism 8.9 Sirtuins and cancer therapy 8.10 Concluding remarks References Chapter-9---The-bifunctional-roles-of-sirtuins_2021_Sirtuin-Biology-in-Cance 9 The bifunctional roles of sirtuins and their therapeutic potential in cancer 9.1 The mammalian sirtuins 9.1.1 SIRT1 9.1.1.1 SIRT1 as a tumor suppressor 9.1.1.2 SIRT1 as an oncoprotein 9.1.2 SIRT2 9.1.2.1 SIRT2 as a tumor suppressor 9.1.2.2 SIRT2 as an oncoprotein 9.1.3 SIRT3 9.1.3.1 SIRT3 as a tumor suppressor 9.1.3.2 SIRT3 as an oncoprotein 9.1.4 SIRT4 9.1.4.1 SIRT4 as a tumor suppressor 9.1.4.2 SIRT4 as an oncoprotein 9.1.5 SIRT5 9.1.5.1 SIRT5 as a tumor suppressor 9.1.5.2 SIRT5 as an oncoprotein 9.1.6 SIRT6 9.1.6.1 SIRT6 as tumor suppressor 9.1.6.2 SIRT6 as an oncoprotein 9.1.7 SIRT7 9.1.7.1 SIRT7 as a tumor suppressor 9.1.7.2 SIRT7 as an oncoprotein 9.2 Sirtuin modulators 9.2.1 Sirtuin inhibitors 9.2.1.1 Nicotinamide and its analogues 9.2.1.2 β-Naphthol-containing inhibitors 9.2.1.3 Indole derivatives 9.2.1.4 Thioacyllysine-containing compounds 9.2.1.5 Tenovin 9.2.1.6 Suramin 9.2.1.7 Other SIRTi 9.2.1.7.1 AGK2 9.2.1.7.2 MHY2256 9.2.1.7.3 SirReal2 9.2.1.7.4 MC2494 9.2.1.7.5 Toxoflavin 9.2.2 Sirtuin activators 9.3 Conclusion and future perspectives Acknowledgment References Chapter-10---Sirtuins-and-next-generation-hallmark_2021_Sirtuin-Biology-in-C 10 Sirtuins and next generation hallmarks of cancer: cellular energetics and tumor promoting inflammation 10.1 Introduction: an overview of sirtuins involvement in inflammation and cancer metabolism 10.2 Nuclear and cytosolic sirtuins involvement in metabolism of cancer and inflammatory cells 10.2.1 SIRT1 10.2.2 SIRT2 10.2.3 SIRT6 10.2.4 SIRT7 10.3 Mitochondrial sirtuins 10.3.1 SIRT3 10.3.2 SIRT4 10.3.3 SIRT5 10.4 Sirtuins indeed link metabolism, inflammation, and cancer? 10.5 Conclusions and perspectives References Chapter-11---Sirtuins-and-cellular-meta_2021_Sirtuin-Biology-in-Cancer-and-M 11 Sirtuins and cellular metabolism in cancers 11.1 The metabolic characteristics of cancers 11.1.1 Glucose metabolism in cancers 11.1.2 Lipometabolism in cancers 11.1.3 Other kinds of metabolism in cancers 11.2 The regulatory modes of sirtuins in controlling cellular metabolism 11.3 Direct epigenetic control of cellular metabolism by sirtuins 11.3.1 Direct epigenetic control of glucometabolism by sirtuins 11.3.2 Direct epigenetic control of lipometabolism by sirtuins 11.3.3 Direct epigenetic control of amino acid metabolism by sirtuins 11.4 Direct posttranslational control of cellular metabolism by sirtuins 11.4.1 Direct posttranslational control of glycolytic enzymes and transporters by sirtuins 11.4.2 Direct posttranslational control of OXPHOS by sirtuins 11.4.3 Direct posttranslational control of lipometabolism by sirtuins 11.4.4 Direct posttranslational control of amino acid metabolism by sirtuins 11.5 Indirect control of cellular metabolism by sirtuins 11.5.1 Indirect control of glycolysis by sirtuins 11.5.1.1 HIF-1/2 11.5.1.2 c-Myc 11.5.1.3 LKB1-AMPK 11.5.1.4 p53 11.5.1.5 Other 11.5.2 Indirect control of OXPHOS by sirtuins 11.5.2.1 PGC-1α 11.5.2.2 MnSOD 11.5.2.3 Drp1 11.5.2.4 GABPα/GABPβ complex 11.5.3 Indirect control of lipometabolism by sirtuins 11.5.3.1 PPARα/γ and PGC-1α 11.5.3.2 SREBP family 11.5.3.3 TR4/TAK1 11.5.3.4 PI3K-Akt 11.5.3.5 LKB1 11.5.4 Indirect control of amino acid metabolism by sirtuins 11.6 Conclusions References Chapter-12---Dual-role-of-sirtuins_2021_Sirtuin-Biology-in-Cancer-and-Metabo 12 Dual role of sirtuins in cancer 12.1 Introduction 12.2 Sirtuins and cancer metabolism 12.3 Sirtuins and oxidative damage 12.4 Sirtuins, genomic stability, and DNA repair 12.5 Sirtuins and metastasis 12.6 Sirtuins and cancer stem cells 12.7 Sirtuins and chemoresistance 12.8 Sirtuins: tumor suppressors or promoters? References Chapter-13---Sirtuin-signaling-in-hemat_2021_Sirtuin-Biology-in-Cancer-and-M 13 Sirtuin signaling in hematologic malignancies Abbreviations 13.1 Introduction 13.2 Hematologic malignancies 13.2.1 The many facets of SIRT1 in cancer biology 13.2.2 Oncogenic roles of SIRT1 13.2.3 Tumor-suppressive roles of SIRT1 13.2.4 SIRT1 in hematologic malignancies 13.2.5 Closing thoughts on SIRT1 13.2.6 SIRT2 regulates genomic stability 13.2.7 SIRT3, the major mitochondrial deacetylase 13.2.8 The elusive SIRT4 regulates glutamine metabolism 13.2.9 SIRT5: the oncogenic desuccinylase 13.2.10 SIRT6 and the age-old Warburg effect 13.2.11 SIRT7 is an oncogene that promotes ribosome biogenesis and DNA repair 13.3 Sirtuins regulate pathways important for hematologic malignancies 13.3.1 MYC-driven hematologic malignancies 13.3.2 Sirtuins and the BCL-2 family of proteins 13.3.3 Sirtuins regulate NF-κB signaling 13.3.4 CD38, a major NADase, affects sirtuin activity 13.4 Therapeutic opportunities 13.5 Conclusions References Chapter-14---Impacts-of-sirtuin1-and-sirtu_2021_Sirtuin-Biology-in-Cancer-an 14 Impacts of sirtuin1 and sirtuin3 on oral carcinogenesis 14.1 Introduction 14.2 Overview of sirtuins 14.2.1 Sirtuin1 14.2.2 Sirtuin3 14.3 Involvement of sirtuins in oral cancer 14.3.1 Sirtuin1 and oral cancer 14.3.2 Sirtuin3 and oral cancer 14.4 Potential therapeutic implications of sirtuins in oral cancer 14.5 Concluding remarks References Index_2021_Sirtuin-Biology-in-Cancer-and-Metabolic-Disease Index