ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Singular Differential Equations and Special Functions

دانلود کتاب معادلات دیفرانسیل مفرد و توابع ویژه

Singular Differential Equations and Special Functions

مشخصات کتاب

Singular Differential Equations and Special Functions

ویرایش: 1 
نویسندگان:   
سری: Mathematics and Physics for Science and Technology 
ISBN (شابک) : 0367137232, 9780367137236 
ناشر: CRC Press 
سال نشر: 2019 
تعداد صفحات: 359 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Singular Differential Equations and Special Functions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب معادلات دیفرانسیل مفرد و توابع ویژه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب معادلات دیفرانسیل مفرد و توابع ویژه



معادلات دیفرانسیل منفرد و توابع ویژه پنجمین کتاب از معادلات دیفرانسیل معمولی با کاربرد در مسیرها و ارتعاشات، مجموعه شش جلدی است. به عنوان یک مجموعه، آنها چهارمین جلد از مجموعه ریاضیات و فیزیک کاربردی در علم و فناوری هستند.

این کتاب پنجم شامل یک فصل است (فصل 9 مجموعه). فصل با کلاس های عمومی شروع می شود معادلات دیفرانسیل و سیستم‌های همزمان که می‌توان ویژگی‌های راه‌حل‌ها را به‌طور پیشینی تعیین کرد، مانند وجود و یکپارچگی راه‌حل، استحکام و یکنواختی با توجه به تغییرات شرایط مرزی و پارامترها، و ثبات و رفتار مجانبی. این کتاب به بررسی مهمترین کلاس معادلات دیفرانسیل خطی با ضرایب متغیر می پردازد که می توانند توابع تحلیلی یا دارای تکینگی های منظم یا نامنظم باشند. حل معادلات دیفرانسیل منفرد با استفاده از (i) سری توان. (ب) تبدیل های انتگرال پارامتری. و (iii) کسرهای ادامه دار منجر به بیش از 20 تابع خاص می شود. در میان این معادلات به معادلات دیفرانسیل دایره ای تعمیم یافته، هذلولی، هوایی، بسل و فراهندسی و توابع ویژه ای که جواب آنها را مشخص می کند، توجه بیشتری می شود.

  • شامل وجود، یکپارچگی، استحکام، یکنواختی و قضایای دیگر برای معادلات دیفرانسیل غیرخطی است
  • درباره ویژگی‌های سیستم‌های دینامیکی که از معادلات دیفرانسیل که آنها را با استفاده از روش هایی مانند توابع لیاپانوف توصیف می کنند
  • شامل معادلات دیفرانسیل خطی با ضرایب تناوبی، از جمله تئوری فلوکت، تعیین کننده های بی نهایت هیل و پارامترهای چندگانه تشدید
  • تئوری جزییات معادله دیفرانسیل بسل تعمیم یافته و توابع فراهندسی تعمیم یافته، گاوسی، همرو و توسعه یافته و روابط با 20 تابع خاص دیگر
  • بررسی معادلات دیفرانسیل خطی با ضرایب تحلیلی یا منظم یا نامنظم r تکینگی ها و راه حل ها از طریق سری های توانی، تبدیل های انتگرال پارامتری، و کسرهای ادامه دار

توضیحاتی درمورد کتاب به خارجی

Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology.

This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions.

  • Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations
  • Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions
  • Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance
  • Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions
  • Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions


فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Diagrams, List, Notes, and Tables
Preface
Acknowledgments
About the Author
Notation for Functions
9. Existence Theorems and Special Functions
	9.1. Existence, Unicity, Robustness, and Uniformity of Solutions
		9.1.1. Existence of Solution and the Lipschitz Condition
		9.1.2. Transformation of a Differential into an Integral Equation (Picard 1893)
		9.1.3. Convergence of the Successive Approximations
		9.1.4. Contraction Mapping and Fixed Point
		9.1.5. Lipschitz (1864) or Contraction Condition, Continuity, and Differentiability
		9.1.6. Continuity (Contraction) Condition on the Independent (Dependent) Variable
		9.1.7. Uniform Convergence to a Continuous Solution
		9.1.8. Theorem of Existence of Solution of a Differential Equation
		9.1.9. Rectangle as the Domain of Successive Approximations
		9.1.10. Theorem of Unicity of Solution of a Differential Equation
		9.1.11. Robustness Relative to Perturbed Initial Conditions
		9.1.12. Comparison of Successive Approximations to the Original and Perturbed Problems
		9.1.13. Theorem of Robustness with Regard to the Initial Condition
		9.1.14. Theorem on Uniformity with Regard to a Parameter in a Differential Equation
		9.1.15. Simultaneous System of First-Order Differential Equations
		9.1.16. Contraction or Lipschitz Condition for Several Variables
		9.1.17. Combined Theorem of Existence, Unicity, Robustness, and Uniformity
		9.1.18. Ordinary Differential Equation of Any Order
		9.1.19. Linear Ordinary Differential Equation
		9.1.20. Combined Theorem for an Ordinary Differential Equation
	9.2. Autonomous Systems and Stability of Equilibria (Lyapunov 1954)
		9.2.1. Local/Asymptotic Stability/Instability and Indifference
		9.2.2. Positive/Negative Definite/Semi-Definite and Indefinite Function
		9.2.3. Derivative along an Unsteady/Autonomous Differential System
		9.2.4. Lyapunov (1966) Function and First Theorem
		9.2.5. Proof of the Lyapunov Stability Theorem
		9.2.6. Proof of the Theorem on Asymptotic Stability
		9.2.7. Proof of the Theorem on Instability
		9.2.8. Damped Oscillator with Parameters Dependent in Position
		9.2.9. Damped Oscillator with Parameters Depending on Time
		9.2.10. Stability of Undamped Oscillator with Parametric Resonance
		9.2.11. Exponential Asymptotic Growth or Decay
		9.2.12. Proof of the Second Lyapunov Theorem (1892)
		9.2.13. Existence of at Least One Eigenvalue of an Autonomous 
System
		9.2.14. Linear Differential Equation with Bounded Coefficients
		9.2.15. Linear Autonomous System with Constant Coefficients
		9.2.16. Linearized Differential System Near an Equilibrium Point
		9.2.17. Fundamental Solution of an Autonomous Differential System
		9.2.18. Properties of Positive-Definite Quadratic Forms
		9.2.19. Stability Function and Its Derivative Following the Differential System
		9.2.20. Third Lyapunov Theorem on Autonomous Systems
		9.2.21. Stability of Solutions of an Autonomous Differential Equation
	9.3. Linear Differential Equations with Periodic Coefficients (Floquet 1883; Lyapunov 1907)
		9.3.1. Conditions for the Existence of Periodic Solutions (Floquet 1883)
		9.3.2. Distinct and Coincident Eigenvalues and Exponents
		9.3.3. Natural Integrals and Asymptotic Stability
		9.3.4. Diagonal Matrices and Jordan Blocks
		9.3.5. Invariant Second-Order Differential Equation
		9.3.6. Growing/Decaying and Monotonic/Oscillatory Solutions
		9.3.7. Fundamental Solution of a Linear Differential Equation
		9.3.8. Eigenvalues of the Invariant Second Order Equation
		9.3.9. Proof of the Fourth Lyapunov (1907) Theorem
	9.4. Analytic Coefficients and Generalized Circular/Hyperbolic Functions
		9.4.1. Singularities of Single-Valued Complex Functions
		9.4.2. Regular Points, Poles, and Essential Singularities
		9.4.3. Sheets of the Riemann Surface of a Multi-Valued Function
		9.4.4. Principal Branch, Branch-Point, and Branch-Cut
		9.4.5. Regular Points and Regular/Irregular Singularities
		9.4.6. Analytic, Regular, and Irregular Integrals
		9.4.7. Singularities and Integrals at the Point-at-Infinity
		9.4.8. Linear Autonomous System with Analytic Coefficients
		9.4.9. Linear Differential Equation with Analytic Coefficients
		9.4.10. Calculation of the Coefficients of the Analytic Solution
		9.4.11. Two Methods to Obtain the Recurrence Relation for the Coefficients
		9.4.12. Generalized Hyperbolic Differential Equation
		9.4.13. Generalized Hyperbolic Cosine and Sine
		9.4.14. Airy (1838) Differential Equation and Functions
		9.4.15. Generalized Circular Cosine and Sine
		9.4.16. Generalized Circular Differential Equation
		9.4.17. Complex Non-Integer Values of the Parameter
		9.4.18. Differentiation of the Generalized Cosine and Sine Functions
		9.4.19. Inequalities for Generalized Cosines and Sines
		9.4.20. Generalized Secant, Cosecant, Tangent, and Cotangent
	9.5. Regular Singularities and Integrals of Two Kinds (Fuchs 1860, Frobenius 1873)
		9.5.1. Linear Autonomous System with a Regular Singularity
		9.5.2. Indices and Coefficients of the Regular Natural Integrals
		9.5.3. Two Related Sets of Regular Natural Integrals
		9.5.4. Application of Compatibility and Initial Conditions
		9.5.5. Linear Differential Equation with Regular Singularities (Fuchs 1868)
		9.5.6. Indicial Equation and Recurrence Formula for the Coefficients
		9.5.7. Regular Integrals of the First and Second Kinds
		9.5.8. Second-Order Differential Equation with a Regular Singularity
		9.5.9. Regular Integral of Second Kind First Type
		9.5.10. Regular Integral of the Second Kind Second Type
		9.5.11. Convergence of the Series in the Regular Integrals
		9.5.12. Wronskian of a Linear Second-Order Differential Equation
		9.5.13. Gamma Function (Weierstrass 1856) as a Generalization of the Factorial
		9.5.14. Generalized Bessel Differential Equation (Campos et al. 2019)
		9.5.15. Order and Degree of the Generalized Bessel Function
		9.5.16. The Digamma Function as the Logarithmic Derivative of the Gamma Function
		9.5.17. Generalized Neumann Function of Integer Order
		9.5.18. Preliminary and Complementary Functions and Logarithmic Term
		9.5.19. General Integral in the Case of Integer Order
		9.5.20. Wronskians of Generalized Bessel and Neumann Functions
		9.5.21. Generalized Neumann Function with Complex Order
		9.5.22. Cylindrical Bessel Differential Equation (Euler 1764, Bessel 1824, Neumann 1867, Hankel 1869)
		9.5.23. Spherical Bessel Differential Equation
		9.5.24. Spherical Bessel and Neumann Functions
		9.5.25. Classification of Six Cases of Regular Integrals
		9.5.26. Relation between Spherical Bessel and Elementary Functions
	9.6. Irregular Singularities and Asymptotic Normal Integrals (Thome 1883, Poincaré 1886, Campos 2001)
		9.6.1. Regular/Irregular Integrals of a Linear Differential Equation
		9.6.2. Regular Integral near an Irregular Singularity
		9.6.3. Existence of a Normal Integral near an Irregular Singularity
		9.6.4. Singularity of a Differential Equation at the Point at Infinity
		9.6.5. Convergent Series versus Asymptotic Expansions
		9.6.6. Spherical and Cylindrical Hankel (1869) Functions
		9.6.7. Asymptotic Integrals of the Cylindrical Bessel Differential Equation (Campos 2001)
		9.6.8. Asymptotic Expansions for Bessel, Neumann, and Hankel Functions
		9.6.9. Generalized Hankel Function of the First Kind
		9.6.10. Generalized Hankel Function of the Second Kind
		9.6.11. Wronskians and Alternative General Integrals
		9.6.12. Generalized versus Original Bessel Differential Equations
		9.6.13. Parametric Discontinuity in the Asymptotic Integrals
		9.6.14. Bifurcation for the Degree at the Point at Infinity
		9.6.15. Numerical Computation for Small and Large Variable
	9.7. Essential Singularities and Infinite Determinants
		9.7.1. Existence of Eigenvalues and of Eigenintegrals
		9.7.2. Irregular Integrals of the First Kind
		9.7.3. Case of Indices Differing by an Integer
		9.7.4. Irregular Integral of Second Kind
		9.7.5. Regular Integrals of the Second Kind First/Second Type
		9.7.6. Irregular, Regular, and Analytic Integrals
		9.7.7. Infinite Linear System for the Coefficients
		9.7.8. Indices as Roots of an Infinite Determinant
		9.7.9. Five Types of Convergence of Infinite Determinants (Poincare 1886)
		9.7.10. Convergence Theorem for Infinite Determinants (Von Koch 1892)
		9.7.11. Parametric Resonance Forced by a Fundamental and Harmonics
		9.7.12. Hill (1892) Differential Equation with Trigonometric Coefficients
		9.7.13. Hill Differential Equation with Power Coefficients
		9.7.14. Infinite Linear System for the Coefficients
		9.7.15. Exact Analytic Evaluation of the Hill Determinant
		9.7.16. Indices as Roots of a Transcendental Equation
	9.8. Kernel and Path of Integral Transforms (Laplace 1812; Bateman 1909)
		9.8.1. Eulerian Integral of the Second Kind (Euler 1772)
		9.8.2. Permutations and Properties of the Beta Function
		9.8.3. Relation between the Gamma and Beta Functions
		9.8.4. Evaluation of Integrals via Gamma and Beta Functions
		9.8.5. Kernel and Path of a General Integral Transform
		9.8.6. Generalized Laplace Transform in the Complex Plane
		9.8.7. Depression of the Degree of the Coefficients of a Differential Equation
		9.8.8. Application to the Generalized Bessel Differential Equation
		9.8.9. Integral Representation for the Generalized Bessel Function
		9.8.10. Application to the Original Bessel Differential Equation
		9.8.11. Integral Representation for the Bessel Function
		9.8.12. Partial Differential Equation for the Bateman (1909) Kernel
		9.8.13. Adjoint Operator and Bilinear Concomitant
		9.8.14. Integral Representations for the Two Hankel Functions
		9.8.15. Integral Representation for the Neumann Function
		9.8.16. Second Integral Representation for the Bessel Function
	9.9. Continued Fractions as Solutions of Differential Equations
		9.9.1. Continued Fraction Associated with a Differential Equation
		9.9.2. Logarithmic Derivative of the Solution of a Differential Equation
		9.9.3. Solution as a Terminating Continued Fraction
		9.9.4. Confluent Hypergeometric Differential Equation (Kummer 1830)
		9.9.5. Convergence of Simple Infinite Continued Fractions
		9.9.6. Continued Fraction for the Confluent Hypergeometric Function
		9.9.7. Generalized Bessel and Confluent Hypergeometric Differential Equations
		9.9.8. Confluent Hypergeometric Series
		9.9.9. Continued Fraction for the Generalized Bessel Function
		9.9.10. Recurrence and Differentiation Relations for Cylinder Functions
		9.9.11. Cylinder Functions with Integer Order Difference
		9.9.12. A Continued Fraction for Cylinder Functions
		9.9.13. Special Limit Periodic Continued Fractions
		9.9.14. Convergence of Complex Continued Fractions
		9.9.15. Convergence of Special Continued Fractions
	Conclusion 9
Bibliography
Index




نظرات کاربران