دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Chan B.K.C.
سری:
ISBN (شابک) : 9783527346653
ناشر: WILEY-VCH
سال نشر: 2023
تعداد صفحات: 665
[666]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Simultaneous Mass Transfer and Chemical Reactions in Engineering Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتقال جرم همزمان و واکنش های شیمیایی در علوم مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نگاهی جامع به علم پایه فرآیند انتشار و انتقال جرم. انتقال جرم به عنوان یک اصل، بخش اساسی از عملیات واحدهای متعدد در مهندسی زیست مولکولی، شیمیایی و فرآیند است. برای مثال فرآیندهای کریستالیزاسیون، تقطیر و جداسازی غشایی از این روش مهم استفاده می کنند. با توجه به این اهمیت - به ویژه در طراحی مهندسی که در آن این فرآیندها اتفاق می افتد - درک طراحی و تجزیه و تحلیل چنین عملیات واحد باید با درک اساسی از نحوه انتقال همزمان جرم و واکنش های شیمیایی که بر این رخدادها تأثیر می گذارد آغاز شود. همچنین آگاهی از به روزترین فناوری ها برای تجزیه و تحلیل و پیش بینی پدیده ها حیاتی است. با توجه به اهمیت این فرآیند، انتقال همزمان جرم و واکنشهای شیمیایی در علوم مهندسی منبع مهمی است زیرا خواننده را با موضوع پیچیده انتقال جرم همزمان با واکنشهای بیوشیمیایی و شیمیایی آشنا میکند و ابزارهایی را برای توسعه یک طرح کاربردی به آنها میدهد. تجزیه و تحلیل سیستم های انتقال جرم و واکنش های همزمان در هسته اصلی این کتاب است، زیرا همه رویکردهای طراحی شناخته شده به دقت بررسی و مقایسه می شوند. این جلد همچنین دانش کاری از آخرین فناوریها را در اختیار خواننده قرار میدهد - با تمرکز ویژه بر زبان برنامهنویسی کامپیوتر منبع باز R - و اینکه چگونه این ابزارها یک منبع ضروری در ارزیابی کمی در مدلهای تحلیل هستند. انتقال همزمان جرم و واکنشهای شیمیایی در علوم مهندسی با تمرکز بر تجزیه و تحلیل این فرآیند و همچنین بحث در مورد وجود و کیفیت متمایز راهحلهای انتقال همزمان جرم و واکنشها، دانش کاری از آخرین اطلاعات مربوط به انتقال جرم و واکنشهای همزمان را فراهم میکند. خوانندگان واکنش های شیمیایی در علوم مهندسی نیز پیدا خواهند کرد مبنای نظری هر مدل طراحی که به دقت بیان شده، مقایسه و ارزیابی شده است قضایای وجود و یگانگی را با دقت برای یک مدل طراحی کلی ایجاد و ایجاد کرد پوشش جامعی از نحوه استفاده از زبان برنامه نویسی R برای تجزیه و تحلیل مدل ها مثالها و مطالعات موردی متعددی که دانش کاری از انتقال جرم و واکنشهای همزمان را ارائه میدهد.
A comprehensive look at the basic science of diffusional process and mass transfer. Mass transfer as a principle is an essential part of numerous unit operations in biomolecular, chemical, and process engineering; crystallization, distillation, and membrane separation processes, for example, use this important method. Given this significance – particularly in engineering design where these processes occur – understanding the design and analysis of such unit operations must begin with a basic understanding of how simultaneous mass transfer and the chemical reactions that influence these occurrences. It is also vital to be aware of the most up-to-date technologies for analyzing and predicting the phenomena. Given the significance of this process, Simultaneous Mass Transfer and Chemical Reactions in Engineering Science is an important resource as it introduces the reader to the complex subject of simultaneous mass transfer with biochemical and chemical reactions and gives them the tools to develop an applicable design. Analyzing the systems of simultaneous mass transfer and reactions is at the core of this book, as all known design approaches are carefully examined and compared. The volume also provides the reader with a working knowledge of the latest technologies – with a special focus on the open-sourced computer programming language R – and how these tools are an essential resource in quantitative assessment in analysis models. Simultaneous Mass Transfer and Chemical Reactions in Engineering Science provides a working knowledge of the latest information on simultaneous mass transfer and reactions by focusing on the analysis of this process, as well as discussing the existence and distinctive quality of the solutions to the Simultaneous Mass Transfer and Chemical Reactions in Engineering Science readers will also find A theoretical basis of each design model that is carefully stated, compared, and assessed Carefully developed and established Existence and Uniqueness Theorems for a general design model Comprehensive coverage of how the programming language R may be used to analyze models Numerous examples and case studies that provide a working knowledge of simultaneous mass transfer and reactions.
Cover Half Title Simultaneous Mass Transfer and Chemical Reactions in Engineering Science Copyright Dedication Contents Preface Author Biography 1. Introduction to Simultaneous Mass Transfer and Chemical Reactions in Engineering Science 1.1 Gas–Liquid Reactions 1.1.1 Simultaneous Biomolecular Reactions and Mass Transfer 1.1.1.1 The Biomedical Environment 1.1.1.2 The Industrial Chemistry and Chemical Engineering Environment 1.1.2 Conclusions 1.1.3 Summary 1.2 The Modeling of Gas–Liquid Reactions 1.2.1 Film Theory of Mass Transfer 1.2.2 Surface Renewal Theory of Mass Transfer 1.2.3 Absorption into a Quiescent Liquid 1.2.3.1 Absorption Accompanied by Chemical Reactions 1.2.3.2 Irreversible Reactions 1.2.4 Absorption into Agitated Liquids 1.2.4.1 An Example of a First‐Order Reaction 1.2.4.2 The Film Model 1.3 The Mathematical Theory of Simultaneous Mass Transfer and Chemical Reactions 1.3.1 Physical Absorption 1.3.2 Chemical Absorption 1.3.2.1 Preliminary Remarks on Simultaneous Mass Transfer (Absorption) with Chemical Reactions 1.3.2.2 Some Solutions to the Mathematical Models of the Theory of Simultaneous Mass Transfer and Chemical Reactions 1.3.2.3 Approximate Closed Form Solutions 1.3.3 Numerical Solutions 1.4 Diffusive Models of Environmental Transport Further Reading 2. Data Analysis Using R Programming 2.1 Data and Data Processing 2.1.1 Introduction 2.1.2 Data Coding 2.1.2.1 Automated Coding Systems 2.1.3 Data Capture 2.1.4 Data Editing 2.1.5 Imputations 2.1.6 Data Quality 2.1.7 Quality Assurance 2.1.8 Quality Control 2.1.9 Quality Management in Statistical Agencies 2.1.10 Producing Results 2.2 Beginning R 2.2.1 R and Statistics 2.2.2 A First Session Using R 2.2.3 The R Environment (This is Important!) 2.3 R as a Calculator 2.3.1 Mathematical Operations Using R 2.3.2 Assignment of Values in R, and Computations Using Vectors and Matrices 2.3.3 Computations in Vectors and Simple Graphics 2.3.4 Use of Factors in R Programming 2.3.4.1 Body Mass Index 2.3.5 Simple Graphics 2.3.6 x as Vectors and Matrices in Statistics 2.3.7 Some Special Functions that Create Vectors 2.3.8 Arrays and Matrices 2.3.9 Use of the Dimension Function dim() in R 2.3.10 Use of the Matrix Function matrix() in R 2.3.11 Some Useful Functions Operating on Matrices in R: colnames, rownames, and t (for transpose) 2.3.12 NA “Not Available” for Missing Values in Datasets 2.3.13 Special Functions that Create Vectors 2.4 Using R in Data Analysis in Human Genetic Epidemiology 2.4.1 Entering Data at the R Command Prompt 2.4.1.1 Creating a Data‐Frame for R Computation Using the EXCEL Spreadsheet (on a Windows Platform) 2.4.1.2 Obtaining a Data Frame from a Text File 2.4.1.3 Data Entry and Analysis Using the Function data.entry() 2.4.1.4 Data Entry Using Several Available R Functions 2.4.1.5 Data Entry and Analysis Using the Function scan() 2.4.1.6 Data Entry and Analysis Using the Function Source() 2.4.1.7 Data Entry and Analysis Using the Spreadsheet Interface in R 2.4.1.8 Human Genetic Epidemiology Using R: The CRAN Package Genetics 2.4.2 The Function list() and the Construction of data.frame() in R 2.4.3 Stock Market Risk Analysis 2.4.3.1 Univariate, Bivariate, and Multivariate Data Analysis 2.A Appendix. Documentation for the Plot Function 2.A.1 Description 2.A.2 Usage 2.A.3 Arguments 2.A.4 Details 2.A.5 See Also Further Reading 3. A Theory of Simultaneous Mass Transfer and Chemical Reactions with Numerical Solutions 3.1 Introduction 3.1.1 A Classical Experimental Study of Simultaneous Absorption of Carbon Dioxide and Ammonia in Water 3.1.2 Physical Absorption 3.1.2.1 Results 3.2 Biomolecular Reactions 3.2.1 Occurrences of Simultaneous Biomolecular Reactions and Mass Transfer Are Common in Many Biomedical Environments 3.3 Some Examples in Chemical Engineering Sciences 3.3.1 Simultaneous Chemical Reactions and Mass Transfer 3.4 Some Models in the Diffusional Operations of Environmental Transport Unaccompanied by Chemical Reactions 3.4.1 Diffusion Models of Environmental Transport 3.4.2 Advection–Diffusion Models of Environmental Transport 3.5 The Concept of Diffusion 3.5.1 Publishers' Remarks 3.5.2 Fick's Laws of Diffusion 3.5.2.1 Fick's First Law of Diffusion (Steady‐State Law) 3.5.2.2 Fick's Second Law of Diffusion 3.5.3 Derivation of Fick's Laws of Diffusion 3.5.3.1 Remarks: Additional Remarks on Fick's Laws of Diffusion 3.5.3.2 Example Solution in One Dimension: Diffusion Length 3.6 The Concept of the Mass Transfer Coefficient 3.7 Theoretical Models of Mass Transfer 3.7.1 Nernst One‐Film Theory Model and the Lewis–Whitman Two‐Film Model 3.7.1.1 Gas Transfer Rates 3.7.1.2 The Nernst One‐Film Model 3.7.1.3 Mass Transfer Coefficients 3.7.1.4 The Lewis–Whitman Two‐Film Model 3.7.1.5 The Two‐Film Model 3.7.1.6 Single‐Film Control 3.7.1.7 Applications 3.7.2 Higbie's Penetration Theory Model 3.7.3 Danckwerts' Surface Renewal Theory Model 3.7.4 Boundary Layer Theory Model 3.7.4.1 Fluid–Fluid Interfaces 3.7.4.2 Fluid–Solid Interfaces 3.7.4.3 Example: Prandtl's Experimental Mass Transfer from a Flat Plate 3.7.5 Mass Transfer Under Laminar Flow Conditions 3.7.6 Mass Transfer Past Solids Under Turbulent Flow 3.7.7 Some Interesting Special Conditions of Mass Transfer 3.7.7.1 Equimolar Counter‐Diffusion of A and B (NA = − NB) 3.7.7.2 For Liquid‐Phase Diffusion 3.7.7.3 Conversions Formulas for Mass Transfer Coefficients in Different Forms 3.7.8 Applications to Chemical Engineering Design 3.7.8.1 Designing a Packed Column for the Absorption of Gaseous CO2 by a Liquid Solution of NaOH, Using the Mathematical Model of Simultaneous Gas Absorption with Chemical Reactions 3.7.8.2 Calculation of Packed Height Requirement for Reducing the Chlorine Concentration in a Chlorine–Air Mixture 3.8 Theory of Simultaneous Bimolecular Reactions and Mass Transfer in Two Dimensions 3.8.1 Numerical Solutions of a Model in Terms of Simultaneous Semi‐linear Parabolic Differential Equations 3.8.1.1 Theory of Simultaneous Bimolecular Reactions and Mass Transfer in Two Dimensions 3.8.2 Existence and Uniqueness Theorems of First‐Order Linear Ordinary Differential Equations 3.8.2.1 Differential Equations 3.8.2.2 Contraction Mappings on a Banach Space 3.8.2.3 Application to Differential Equations 3.8.3 An Existence Theorem of the Governing Simultaneous Semi‐linear Parabolic Partial Differential Equations 3.8.4 A Uniqueness Theorem of the Governing Simultaneous Semi‐linear Parabolic Partial Differential Equations 3.9 Theory of Simultaneous Bimolecular Reactions and Mass Transfer in Two Dimensions: Further Cases of Practical Interests 3.9.1 Case of Stagnant Film of Finite Thickness – Second‐Order Irreversible Reactions 3.9.2 Case of Unsteady‐State Absorption in the Stagnant Liquid – Slow First‐Order Reaction (S&P 325, 328) 3.9.3 Simultaneous Absorption of Two Gases in a Liquid in Which Each Then Reacts With a Third Component in the Liquid 3.9.3.1 Mathematical Modeling 3.9.3.2 Analysis of the Model: A + B → 3.9.3.3 Discussions 3.9.3.4 Further Theoretical Analysis 3.9.4 Simultaneous Absorption of Two Gases in a Liquid in Which Each Then Reacts with a Third Component in the Liquid 3.9.4.1 The Mathematical Model 3.9.4.2 Analysis of the Model 3.9.4.3 Boundary Conditions 3.9.4.4 Mass Transfer Coefficients 3.9.5 Cases of Slow First‐Order Reactions 3.9.5.1 Case of Unsteady‐State Absorption in the Stagnant Liquid 3.9.5.2 Case of Unsteady‐State Absorption in the Stagnant Liquid – Slow First‐Order Reactions 3.10 Further Theoretical Analysis Further Reading 4. Numerical Worked Examples Using R for Simultaneous Mass Transfer and Chemical Reactions 4.1 Advection and Convection 4.1.1 Advection 4.1.2 Advection vs. Convection 4.1.2.1 Meteorology 4.1.2.2 The Mathematics of Advection 4.1.2.3 The Advection Equation 4.1.2.4 The Advection Operator in the Incompressible Navier–Stokes Equations 4.2 Worked Examples 4.3 Partial Differential Equations 4.4 A Parabolic PDE 4.4.1 Steady‐State Solution 4.4.2 The Method of Lines Further Reading 5. More Numerical Worked Examples Using R for Simultaneous Mass Transfer and Chemical Reaction 5.1 Introduction 5.2 Advection 5.2.1 Advection vs. Convection 5.2.1.1 Meteorology 5.2.1.2 The Mathematics of Advection 5.2.1.3 The Advection Equation 5.2.1.4 Solving the Advection Equation 5.2.1.5 The Advection Operator in the Incompressible Navier–Stokes Equations 5.3 Solving Partial Differential Equations Using the R Package ReacTran 5.3.1 Worked Examples 5.4 Some Final Remarks on Solving Partial Differential Equations Using the R Package ReacTran 5.4.1 Partial Differential Equations 5.4.2 A Parabolic PDE 5.4.2.1 Steady‐State Solution 5.4.2.2 The Method of Lines Further Reading 6. Solving Partial Differential Equations, Generally Applicable to Modeling Simultaneous Mass Transfer and Chemical Reactions, Using the R Package ReacTran 6.1 Partial Differential Equations (PDE) 6.2 A Parabolic PDE 6.3 Steady‐State Solution 6.3.1 The Method of Lines 6.3.2 A Hyperbolic PDE 6.4 The General 3D Advective–Diffusive Transport PDE 6.5 The General 3D Advective–Diffusive Transport PDE 6.5.1 The Advection Equation 6.5.2 Solving the Advection Equation 6.5.3 The Advection Operator in the Incompressible Navier–Stokes Equations See Also Further Reading References Further Reading Index