دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: José L. Risco Martín, Saurabh Mittal, Tuncer Ören سری: Simulation Foundations, Methods and Applications ISBN (شابک) : 9783030519087, 9783030519094 ناشر: Springer سال نشر: 2020 تعداد صفحات: 453 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Simulation for Cyber-Physical Systems Engineering: A Cloud-Based Context به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی برای مهندسی سیستم های سایبری-فیزیکی: زمینه ای مبتنی بر ابر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جامع طیف وسیعی از نمونهها را بررسی میکند که توسط گروهی متنوع از متخصصان دانشگاهی و صنعتی تهیه شده است، که نشان میدهد چگونه شبیهسازی مبتنی بر ابر به طور گسترده در بسیاری از رشتهها، از جمله مهندسی سیستمهای فیزیکی سایبری استفاده میشود. این کتاب خلاصه ای از وضعیت هنر در شبیه سازی مبتنی بر ابر است که مدرسان می توانند از آن برای اطلاع رسانی به نسل بعدی استفاده کنند. این زیرساختهای اساسی، الگوهای مدلسازی و روشهای شبیهسازی را که میتوان برای توسعه نسل بعدی سیستمها برای یک جامعه بسیار متصل به کار برد، برجسته میکند. چنین سیستم هایی که به درستی سیستم های فیزیکی سایبری (CPS) نامیده می شوند، اکنون به طور گسترده در مواردی مانند استفاده می شوند. سیستم های حمل و نقل، شبکه های هوشمند، وسایل نقلیه متصل، سیستم های تولید صنعتی، مراقبت های بهداشتی، آموزش و دفاع. مدلسازی و شبیهسازی (M&S)، همراه با فناوریهای کلان داده، در خط مقدم تحقیقات مهندسی سیستمهای پیچیده قرار دارند. رشته های شبیه سازی مبتنی بر ابر و مهندسی CPS با سرعتی سریع در حال تکامل هستند، اما به طور مطلوب از پیشرفت یکدیگر پشتیبانی نمی کنند. این کتاب این دو جامعه را که در حال حاضر کاربردهای چند رشته ای را ارائه می دهند، گرد هم می آورد. این یک نمای کلی از چشم انداز فناوری های شبیه سازی و زیرساخت های مربوط به استفاده از محیط های مبتنی بر ابر برای مهندسی CPS را ارائه می دهد. این مهندسی، طراحی و کاربرد فناوریهای شبیهسازی ابری و زیرساختهای قابل اجرا برای مهندسی CPS را پوشش میدهد. مشارکتها درسهای ارزشمندی را از توسعه سیستمهای جاسازی شده و روباتیک در زمان واقعی به اشتراک میگذارند که از طریق زیرساختهای مبتنی بر ابر برای کاربرد در مهندسی CPS و جامعه مبتنی بر اینترنت اشیا مستقر شدهاند. این پوشش شامل M&S مبتنی بر ابر به عنوان رسانه ای برای تسهیل مهندسی و مدیریت CPS است و به تفصیل در مورد فناوری های موجود M&S مبتنی بر ابر و تأثیر آنها بر جنبه های خاص مهندسی CPS می پردازد.
This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other’s advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering.
Preface Contents Editors and Contributors Part IFoundations 1 Cloud-Based M&S for Cyber-Physical Systems Engineering 1.1 Introduction 1.2 Cloud-Based M&S 1.3 M&S-Based CPS Engineering 1.3.1 The Need for a Unified M&S Process 1.3.2 Cloud Implications for CPS Engineering 1.4 Book Overview 1.5 Summary References 2 Composability Challenges for Effective Cyber Physical Systems Applications in the Domain of Cloud, Edge, and Fog Computing 2.1 Introduction 2.2 Cloud, Edge, and Fog Computing 2.2.1 Cloud Computing 2.2.2 Edge Computing 2.2.3 Fog Computing 2.2.4 Cyber Physical Systems and Cloud, Edge, and Fog Solutions 2.3 Providing Computational Capability 2.3.1 Models as the Reality of Computational Functions 2.3.2 Interoperability Versus Composability 2.3.3 Complementary and Competing Models 2.4 Conceptual Consistency 2.4.1 Data and Processes 2.4.2 Ontological Representations 2.5 Summary and Discussion References 3 Truth Management with Concept-Driven Agent Architecture in Distributed Modeling and Simulation for Cyber Physical Systems Engineering 3.1 Introduction 3.2 SoS Nature of CPS 3.3 CPS Modeling and Simulation 3.4 Distributed Simulation Considerations for SoS 3.4.1 Distributed Simulation Overview 3.4.2 The SoS Nature of Distributed Simulation 3.4.3 Distributed Simulation Challenges and Solution Approaches 3.4.4 Truth Management Approaches in Distributed Simulation 3.5 Conceptual Alignment and Reference Architecture for Truth Management 3.5.1 Mobile Propertied Agents (MPAs) and Concept-Driven Agent Architecture (CDAA) 3.5.2 Mathematical Considerations for a Parallel Distributed Cloud-Based M&S Infrastructure 3.5.3 Reference Architecture Implementation 3.6 Cloud Implications for Plausible Solution 3.7 MPA/CDAA Applied to CPS M&S 3.8 Conclusions and Future Work References 4 Implementing the Modelling and Simulation as a Service (MSaaS) Paradigm 4.1 Introduction 4.1.1 Terminology 4.1.2 Allied Framework for MSaaS 4.1.3 Chapter Overview 4.2 Operational Concept 4.2.1 MSaaS from the User Perspective 4.2.2 Operational Concept Document 4.2.3 Vision Statement and Goals 4.3 Technical Concept 4.3.1 MSaaS Reference Architecture 4.3.2 MSaaS Discovery Service and Metadata 4.3.3 MSaaS Engineering Process 4.4 Governance Concept 4.4.1 Governance and Roles 4.4.2 General Policies 4.4.3 Security Policies 4.4.4 Compliance Policies 4.5 Experimentation 4.5.1 Explore and Test Enabling Technology 4.5.2 Test Solutions for Simulation Services 4.6 Evaluation 4.7 Implementation Strategy and Next Steps 4.7.1 Implementation Strategy 4.7.2 Next Steps 4.8 Summary and Conclusions References 5 Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud 5.1 Introduction 5.1.1 Connotation of CPS 5.1.2 Connotation of CPS Engineering 5.1.3 Challenges of CPS Engineering for Modern Modeling and Simulation 5.2 Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud (CPSEO-IHPSC) for CPS Engineering 5.2.1 Connotation of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud (CPSEO-IHPSC) for CPS Engineering: 5.2.2 CPSEO-IHPSC Architecture 5.2.3 CPSEO-IHPSC Technical System 5.3 The Research of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud (Prototype) 5.3.1 System Architecture of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud Prototype 5.3.2 Key Technical Achievements of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud Prototype 5.3.3 Technical Novelty of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud Prototype 5.4 Case Study of Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud for CPS Engineering (Prototype) 5.4.1 Based on CPSEO-IHPSC Digital Twins Technology of Intelligent Manufacturing System Application 5.4.2 Based on CPSEO-IHPSC Digital Twins Technology of Smart City System Case 5.5 Suggestions on Developing Cyber-Physical System Engineering Oriented Intelligent High Performance Simulation Cloud in the New Era 5.5.1 Interpretation of “New Internet + Cloud Computing + Big Data + New Artificial Intelligence+” 5.5.2 Focusing on the Coordinated Development of Technology, Industry, and Application References Part IIMethodology 6 Service Composition and Scheduling in Cloud-Based Simulation 6.1 Introduction 6.1.1 The Characteristics of Cloud-Based Simulation 6.1.2 Related Works 6.2 A Service Network Model for Simulation Entity Service Composition and Scheduling 6.2.1 Service and Task Description Models 6.2.2 Service Network-Based Service Composition and Scheduling Model 6.2.3 Case Study 6.3 DDDS-Based Dynamic Service Scheduling in a Cloud Environment 6.3.1 System Framework 6.3.2 Scheduling Rules 6.3.3 DEVS Modeling 6.3.4 DDDS Strategies 6.4 Conclusions References 7 Agent-Directed Simulation and Nature-Inspired Modeling for Cyber-Physical Systems Engineering 7.1 Introduction to Cyber-Physical Systems (CPS) 7.2 Simulation and Its Increasing Importance 7.2.1 Inputs 7.2.2 Coupling 7.3 Agent-Directed Simulation (ADS) 7.4 Nature-Inspired Modeling and Computing 7.4.1 Sources of Information 7.4.2 Categories of Nature-Inspired Models 7.5 Systems Engineering and Cyber-Physical Systems Engineering 7.6 Conclusions References 8 Composing Cyber-Physical Simulation Services in the Cloud via the DEVS Distributed Modeling Framework 8.1 Introduction 8.2 Systems Engineering for Multi-Domain Operations 8.3 Emerging Technologies to Support Cloud-Based Modeling and Simulation 8.3.1 Cloud-Based Modeling and Simulation 8.3.2 Modeling and Simulation as a Service 8.3.3 Microservices and Domain-Driven Design 8.3.4 Discrete Event System (DEVS) Distributed Modeling Framework (DMF) 8.4 Simulation for Multi-Domain Operations 8.4.1 DSEEP Phase 1—Define Composed Simulation Service Objectives 8.4.2 DSEEP Phase 2—Perform Conceptual Analysis 8.4.3 DSEEP Phase 3—Design Composed Simulation Service 8.4.4 DSEEP Phase 4—Develop Composed Simulation Service 8.4.5 DSEEP Phase 5—Integrate and Test Composed Simulation Service 8.4.6 DSEEP Phase 6—Execute Composed Simulation Service 8.4.7 DSEEP Phase 7—Analyze Data and Evaluate Results 8.5 Conclusions and Follow-On Research References 9 Anticipative, Incursive and Hyperincursive Discrete Equations for Simulation-Based Cyber-Physical System Studies 9.1 Introduction 9.2 Presentation Step by Step of the Second-Order Hyperincursive Discrete Harmonic Oscillator 9.3 The 4 Dimensionless Incursive Discrete Equations of the Harmonic Oscillator 9.4 The Constants of Motion of the Two Incursive Discrete Equations of the Harmonic Oscillator [33] 9.5 Numerical Simulations of the Two Incursive Discrete Harmonic Oscillators 9.6 The Dimensionless Hyperincursive Discrete Harmonic Oscillator Is Separable into Two Incursive Discrete Harmonic Oscillators 9.7 Numerical Simulations of the Hyperincursive Discrete Equations of the Harmonic Oscillator 9.8 Rotation of the Incursive Harmonic Oscillators to Recursive Discrete Harmonic Oscillators 9.9 The Space and Time-Symmetric Second-Order Hyperincursive Discrete Klein–Gordon Equation 9.10 The Hyperincursive Discrete Majorana Equations and Continuous Majorana Real 4-Spinors 9.11 The Bifurcation of the Majorana Real 4-Spinors to the Dirac Real 8-Spinors 9.12 The 4 Hyperincursive Discrete Dirac 4-Spinors Equations 9.13 The Hyperincursive Discrete Klein–Gordon Equation Bifurcates to the 16 Proca Equations 9.14 Simulation of the Hyperincursive Discrete Quantum Majorana and Dirac Wave Equations 9.15 Conclusion References Part IIIApplications 10 Offering Simulation Services Using a Hybrid Cloud/HPC Architecture 10.1 Introduction 10.1.1 Web-Based Computing 10.1.2 Cloud Computing 10.2 Desired Functionality 10.3 The HPC Solution 10.3.1 Security and Resource Management 10.3.2 Identity Mapping 10.3.3 Market Support 10.3.4 Developer Effort 10.3.5 User Storage 10.3.6 Resource Usage 10.3.7 Access to the Command Line and Desktop 10.3.8 Seamless System Integration 10.4 OnDemand in a Cloud 10.4.1 HPC as a Cloud 10.4.2 Using a Cloud as a Resource Provider 10.5 Evolving OnDemand 10.5.1 Building a Front End at OSC 10.5.2 Working with AweSim 10.5.3 OSC OnDemand 10.5.4 The Future of OnDemand References 11 Cyber-Physical Systems Design Flow to Manage Multi-channel Acquisition System for Real-Time Migraine Monitoring and Prediction 11.1 Introduction 11.2 Technologies Involved in the Design Flow 11.2.1 FPGAs and Healthcare Monitoring Systems 11.2.2 Discrete Event System Specification (DEVS) 11.2.3 Predictive Models 11.3 System I: Migraine Predictive Device 11.3.1 FPGA Implementation 11.3.2 HW Setup 11.3.3 Validation 11.4 System II: DEVS-based Framework to Deploy Cyber-Physical Systems Over IoT Environments 11.4.1 Framework Design 11.4.2 From Sensors to the Cloud: Scalability Issues 11.5 Conclusions References 12 Significance of Virtual Battery in Modern Industrial Cyber-Physical Systems 12.1 Introduction 12.2 Related Work 12.3 History of Cell and Batteries 12.4 Need for Virtual Battery 12.5 Parameters Impacting a Virtual Battery 12.6 Designing Virtual Battery 12.7 Conclusion and Future Work References 13 An Architecture for Low Overhead Grid, HPC, and Cloud-Based Simulation as a Service 13.1 Introduction 13.2 Applications in Experimental Design and Simulation Optimization 13.2.1 Classical Design of Experiments in MEG 13.2.2 Simulation Optimization in MEG 13.2.3 Response Surface Approximations in MEG 13.3 MEG Design and Architecture 13.3.1 Architectural Enhancement 13.3.2 Experiment Service 13.3.3 Ouroboros Service 13.3.4 Job Manager Service 13.3.5 User Interface [UI] Service and Data Visualization 13.3.6 Data Services 13.3.7 MEG Experiment Primer—Ackley Function 13.4 MEG and Cyber-Physical Systems 13.5 Summary and Future Work 13.5.1 MEG Summary and Current Status References Part IVReliability Issues 14 Cloud-Based Simulation Platform for Quantifying Cyber-Physical Systems Resilience 14.1 Introduction 14.2 Cyber-Physical Systems (CPS) 14.2.1 CPS and Other Related Fields 14.3 Cloud Computing Environment 14.4 CPS and Cloud Security Concerns 14.4.1 CPS Security Threats 14.4.2 Cloud Security Issues 14.5 Modeling CPS Cyber Resilience Metrics 14.5.1 Cyber Resilience: Definition and Characteristics 14.5.2 Common Vulnerability Scoring System (CVSS) 14.5.3 Vulnerability Graph Model 14.5.4 Resilience Metrics Formulation 14.6 Cloud-Based Simulation Platform 14.6.1 Simulation Platform Architecture 14.6.2 Simulation Platform Deployment Plan 14.6.3 Use Case: An AWS-Based Qualitative Simulation Platform for Resilience Assessment 14.7 Challenges of Cloud-Based CPS Simulation Platform and Way Forward 14.8 Conclusion References 15 Reliability Analysis of Cyber-Physical Systems 15.1 Introduction 15.2 On Traditional Reliability in the Context of CPS 15.3 Holistic Reliability of Cyber-Physical Systems 15.3.1 Hardware Reliability 15.3.2 Software Reliability 15.3.3 Reliability Related to Human Interaction 15.4 Combined Reliability of CPS 15.4.1 CPS Reliability Approaches 15.4.2 Challenges and Opportunities Associated with Reliability of CPS 15.5 Data-Driven Reliability Analysis of CPS 15.6 Illustrative Examples (Case Studies) 15.6.1 Cyber-Physical Production Systems (Smart Factories) 15.6.2 Smart Buildings 15.7 Conclusions References 16 Dimensions of Trust in Cyber Physical Systems 16.1 Introduction 16.1.1 Internet of Things and Cyber Physical Systems 16.1.2 Internet of Things and Smart Cities 16.2 Trust 16.2.1 Definitions 16.2.2 Types of Trust in IoT Systems 16.2.3 Trust Architecture 16.3 Trust Research Strategy 16.3.1 Physical and Perception Layer 16.3.2 Network Layer 16.3.3 Application Layer 16.4 Simulation Trust 16.4.1 LVC and IoT 16.4.2 Internet of Simulation Things 16.5 Internet of Trusted Simulations 16.6 Conclusions References 17 Ethical and Other Highly Desirable Reliability Requirements for Cyber-Physical Systems Engineering 17.1 Introduction 17.2 Cyber-Physical Systems and Cyber-Physical Systems Engineering 17.3 Systems Engineering Approach for Reliability Issues 17.4 Reliability of and Failure Avoidance in Computation and in Simulation Studies 17.4.1 Validity and Verification Issues of Modeling and Simulation 17.4.2 A Frame of Reference for the Assessment of the Acceptability of Simulation Studies 17.4.3 Failure Avoidance: Artificial Intelligence (AI) 17.4.4 Failure Avoidance in or Due to Simulation Studies 17.5 Aspects of Sources of Failures 17.5.1 Ethics and Value Systems 17.5.2 Decision-Making Biases 17.5.3 Improper Use of Information: Misinformation, Disinformation, and Mal-information 17.5.4 Attacks (by Humans and Autonomous AI Systems) 17.5.5 Flaws 17.5.6 Accidents 17.5.7 Natural Disasters 17.6 Conclusion References Index