دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Arup Bhattacharyya
سری:
ISBN (شابک) : 9781138032712, 9781138746329
ناشر: CRC Press
سال نشر: 2017
تعداد صفحات: 545
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
کلمات کلیدی مربوط به کتاب دستگاه ها و فناوری حافظه یکپارچه مبتنی بر سیلیکون: دستگاه های ذخیره سازی نیمه هادی -- طراحی و ساخت
در صورت تبدیل فایل کتاب Silicon based unified memory devices and technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستگاه ها و فناوری حافظه یکپارچه مبتنی بر سیلیکون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تمرکز اصلی این کتاب بر روی مفاهیم اولیه دستگاه، طراحی سلول حافظه و یکپارچه سازی فناوری فرآیند است. بخش اول پوشش عمیقی از دستگاههای حافظه غیرفرار معمولی، ساختارهای پشتهای از فیزیک دستگاه، دیدگاههای تاریخی را ارائه میکند و محدودیتهای دستگاههای معمولی را شناسایی میکند. بخش دوم به بررسی پیشرفتهای انجام شده در کاهش و/یا حذف محدودیتهای موجود پارامترهای دستگاه NVM از نقطهنظر مقیاسپذیری دستگاه، توسعهپذیری برنامه و قابلیت اطمینان میپردازد. بخش آخر چندین گزینه از مفاهیم سلول حافظه یکپارچه (غیر فرار) مبتنی بر سیلیکون و طرحهای پشته (SUM) را پیشنهاد میکند. این کتاب دانشی را برای پرسنل تحقیق و توسعه صنعتی فراهم می کند تا فناوری حافظه آینده را با تأسیسات تأسیس شده مبتنی بر FET سیلیکونی خود هدایت کنند. این پتانسیل های کاربردی حافظه را در زمینه هایی مانند رباتیک، اویونیک، صنعت بهداشت، وسایل نقلیه فضایی، علوم فضایی، تصویربرداری زیستی، ژنتیک و غیره بررسی می کند.
The primary focus of this book is on basic device concepts, memory cell design, and process technology integration. The first part provides in-depth coverage of conventional nonvolatile memory devices, stack structures from device physics, historical perspectives, and identifies limitations of conventional devices. The second part reviews advances made in reducing and/or eliminating existing limitations of NVM device parameters from the standpoint of device scalability, application extendibility, and reliability. The final part proposes multiple options of silicon based unified (nonvolatile) memory cell concepts and stack designs (SUMs). The book provides Industrial R&D personnel with the knowledge to drive the future memory technology with the established silicon FET-based establishments of their own. It explores application potentials of memory in areas such as robotics, avionics, health-industry, space vehicles, space sciences, bio-imaging, genetics etc.
Content: PART I CONVENTIONAL SILICON BASED NVM DEVICES 1: SILICON BASED DIGITAL MEMORIES AND NVMs: AN INTRODUCTORY OVERVIEW 2: HISTORICAL PROGRESSION OF NVM DEVICES 2.1 FLOATING GATE DEVICES 2.2 CONVENTIONAL CHARGE TRAPPIN (CT) DEVICES 2.3 NANO CRYSTAL CHARGE TRAPPING NVMs (NC DEVICES) 2.4 DIRECT TUNNEL MEMORY (DTM) 3: GENERAL PROPERTIES OF DIELECTRICS AND INTERFACE FOR NVM DEVICES 3.1 ATTRIBUTES OF GATE STACKS FOR NVM DEVICES 3.2 GENERAL PROPERTIES OF THIN DIELECTRIC FILMS 3.3 INTERFACE PROPERTIES 3.4 GATE MATERIAL FOR NVM DEVICES 4: DIELECTRIC FILMS FOR NVM DEVICES 4.1 THERMAL OXIDE: SiO2 4.2 CVD or LPCVD NITRIDE: Si3N4 4.3 SILICON OXY-NITRIDES: SiONs 4.4 SILICON RICH INSULATORS: (SROs and SRNs) 5: NVM UNIQUE DEVICE PROPERTIES 5.1 MEMORY WINDOW W 5.2 MEMORY RETENTION 5.3 MEMORY ENDURANCE 6: NVM DEVICE STACK DESIGN 6.1 FUNDAMENTALS 6.2 FG NAND FLASH DEVICES: STACK/CELL DESIGN: 6.3 CHARGE TRAPPING DEVICES: CELL / STACK DESIGNS: 7: NVM CELLS, ARRAYS AND DISTURBS 7.1 PRE-SILICON GATE TECHNOLOGY AND NVM CELLS 7.2 THE PRE-NAND FLASH NVM CELLS IN SILICON GATE TECHNOLOGY 7.3 THE NAND FLASH CELL 7.4 FLOATING GATE NOR CELLS AND ARRAYS 7.5 CHARGE TRAP NVM CELLS AND ARRAYS 7.6 DISTURBS AND MITIGATION IN NVM CELLS AND ARRAYS 8: NVM PROCESS TECHNOLOGY AND INTEGRATION SCHEME 8.1 SILICON GATE CMOS PROCESS TECHNOLOGY HISTORY 8.2 NVM-UNIQUE TECHNOLOGY INTEGRATION FEATURES 8.3 NVM PROCESS FLOW AND INTEGRATION SCHEME 8.4 NROM PROCESS FLOW AND INTEGRATION SCHEME 9: NVM DEVICE RELIABILITY 9.1 RELIABILITY ISSUES ASSOCIATED WITH GATE STACK DIELECTRIC ELEMENTS 9.2 SiO2 TUNNEL DIELECTRIC FILM RELIABILITY 9.3 RADIATION INDUCED INSTABILITY 10: CONVENTIONAL NVM CHALLENGES 10.1 SCALABILITY CHALLENGES OF CONVENTIONAL NVMs PART II ADVANCED NVM DEVICES AND TECHNOLOGY 11: VOLTAGE SCALABILITY 11.1 WHY VOLTAGE SCALING 11.2 EARLY HISTORY OF VOLTAGE SCALING 11.3 RECENT DEVELOPMENTS IN VOLTAGE SCALING 11.4 CT DEVICES SONOS VOLTAGE SCALING 12: HIGH-K DIELECTRICS FILMS FOR NVM 12.1 HISTORICAL PERSPECTIVE 12.2 GENERAL REQUIREMENTS 12.3 COMMON HIGH K DIELECTRIC FILMS FOR NVM GATE 12.4 FET GATE INSULATOR REQUIREMENTS 12.5 GENERAL CONSIDERATIONS FOR GATE INSULATOR APPLICATIONS: FILMS OF Al2O3, ZrO2, HfO2, Ta2O5, AND TiO2 12.6 ALUMINA (Al2O3) 12.7 HAFNIA (HfO2) 12.8 ZIRCONIA (ZrO2) 12.9 TANTALUM OXIDE (Ta2O5) AND TITANIUM OXIDE (TiO2) 12.10 BI-METAL OXIDES AND ALUMINATES OF HAFNIUM AND ZIRCONIUM 12.11 ALUMINATES OF LANTHANIDES 12.12 NITRIDES AND OXYNITRIDES OF HAFNIUM AND ZIRCONIUM 12.13 HAFNIUM SILICON OXYNITRIDE (HfSiON) 12.14 COMPARISON OF BAND DIAGRAMS OF HfO2, HfSiON, ZrO2 and LaAlO3 12.15 COMMON HIGH K FILMS FOR NVM APPLICATIONS 12.16 REVIEW OF HIGH K DIELECTRIC FILM APPLIATIONS FOR CURRENT NVM DEVICES 12.17 APPLIABILITY OF HIGH K DIELECTRIC FILMS FOR NVM GATE STACK DESIGN 12.18 HIGH K FILMS FOR TUNNELING12.19 LEAKAGE AND RETENTION FOR HIGH K TUNNEL DIELECTRIC FILMS 12.20 HIGH K FILMS FOR CHARGE TRAPPING 12.21 HIGH K FILMS FOR CHARGE BLOCKING 12.22 DEVICE DESIGN OBJECTIVES AND DIELECTRIC SELECTION OPTIONS 12.23 OTHER POTENTIAL FUTURE HIGH K DIELECTRIC FILMS FOR NVM DEVICES 12.24 INTEGRATION OF HIGH K FILMS IN SILICON BASED CMOS NVM TECHNOLOGY 13: BAND ENGINEERING FOR NVM DEVICES 13.1 REVISITING BAND-DIAGRAM AND BAND-ENGNEERING FOR CONVENTIONAL NVMs 13.2 BAND ENGINEERING USING SINGLE AND MULTILAYER DIELECTRICS 13.3 BAND ENGINEERING OPTIONS FOR THICKER MULTILAYER TUNNEL DIELECTRICS 13.4 BAND ENGINEERING OPTIONS FOR DIRECT TUNNEL MULTILAYER TUNNEL DELECTRICS 13.5 APPLICATIONS OF BAND ENGINEERING FOR SPECIFIC NVM DEVICE ATTRIBUTES 13.6 BAND ENGINEERING FOR DIRECT TUNNEL NVM DEVICES 13.7 BAND ENGINEERING FOR MULTILEVEL (MLC) and MULTIFUNCTIONAL (MF) NVMs 14: ENHANCED TECHNOLOGY INTEGRATION FOR NVM 14.1 FUNCTIONAL INTEGRATION AT INTERCONNECT AND PACKAGING LEVELS 14.2 NVM INTEGRATION AT MEMORY LEVEL 14.3 INTEGRATION AT FRONT-END-OF-LINE (FEOL) LEVEL 14.4 NVM TECHNOLOGY /DEVICE INTEGRATION SCHEMES 14.5 NVM DEVICE TRANSITION AND INTEGRATION CHALLENGES 14.6 ADDRESSING NVM DEVICE/ARRAYS CHALLENGES AND INTEGRATION: 15: PLANAR MULTILEVEL STORAGE NVM DEVICES 15.1 FG to FG CAPACITIVE COUPLING (Cell to cell coupling: CCC) for MLC NAND Design: 15.2 GCR for MLC NAND DESIGN 15.3 FG-MLC CELL DESIGNS FOR MEMORY LEVELS, STABILITY, SENSE MARGIN AND RELIABILITY 15.4 ADVANCED TECHNOLOGY: FG-MLC EXTENDABILITY CHALLENGES 15.5 PLANAR & WRAP-AROUND FLOATING GATE FLASH DESIGNS: EXTENDABILITY ISSUES 15.6 CURRENT STATE-OF-THE-ART IN MLC FG-NAND FLASH DEVICE & PRODUCTS 15.7 PLANR CHARGE TRAPPING MLC DEVICES: ENHANCED SONOS/MONOS 15.8 PLANAR CHARGE-TRAPPING MNSC DEVICES AND EXTENDABILITY: MNSC NROM AND NAND 15.9 ENHANCED CT-MNSC DEVICES 15.10 FUTURE OF PLANAR MULTILEVEL STORAGE NVM TECHNOLOGY, DEVICE & PRODUCTS 15.11 MULTIPLANAR STACKABLE NAND DEVICES AND TECHNOLOGY 15.12 ADDRESSING CURRENT PLANAR MLC FG-NAND-FLASH / SSD LIMITATIONS & SCALABILITY ISSUES 16: NON PLANAR AND 3D DEVICES AND ARRAYS 16.1 NON-PLANAR MULTI-BIT/CELL VERTICAL CHANNEL CT-DEVICES 16.2 FINFET AND GATE-ALL-AROUND (GAA) NV DEVICES 16.3 SURROUND GATE NV DEVICES (SGT) 16.4 FULL 3D NV DEVICES AND ARRAYS 17: EMERGING NVMs & LIMITATIONS OF CURRENT NVM DEVICES 17.1 DEVICE LEVEL AND FUNCTIONAL LEVEL ATTRIBUTES OF DRAM, NVMs(SSDs) AND HDD 17.2 The NVM MARKET HORIZON AND DRIVING FACTORS 17.3 EMERGING CONTENDERS FOR CONVENTIONAL SILICON-BASED NVM MEMORIES 17.4 REQIREMENTS OF MEMORY ATTRIBUTES FOR FUTURE APPLICATIONS / SYSTEMS 18: ADVANCED SILICON-BASED NVM DEVICE CONCEPTS 18.1 DEVICE PARAMETER ENHANCEMENT CONSIDERATION 18.2 APPLICATION PARAMETER ENHANCEMENT CONSIDERATION 18.3 APPLICATION DRIVERS FOR EMBEDDED AND STAND-ALONE NVMs 18.4 FUNCTIONAL AND ARCHITECTURAL REQUIREMENTS AND GROUPING OF NROMS 18.5 NVM EMBEDDED DEVICE TYPES AND OPTIONS 18.6 NVM DEVICE INTEGRATION OPTIONS 18.7 NVM PRODUCT AND STACK DESIGN BASIC CONSIDERATION 18.8 Advanced NVM DEVICE AND ARRAY CONCEPTS 18.9 ADVANCED NVM DEVICES AND ARRAYS: Device Stack and Band Features 18.10 SCALABLE AND NON-PLANAR NROMs 18.11 MLS and DENSE NROM DESIGN CONCEPTS: BOTH PLANAR AND NON-PLANAR 18.12 ADVANCED NAND DESIGN CONCEPTS: PLANAR AND NON-PLANAR 18.13 ADVANCED NANO-CRYSTAL DEVICE CONCEPTS 18.14 OTHER ADVACED MLC NVM DEVICE CONCEPTS 18.15 MULTIFUNCTIONAL NVM DEVICES PART III: SUM: SILICON BASED UNIFIED MEMORY 19: SUM PERSPECTIVE, DEVICE CONCEPTS AND POTENTIALS 19.1 SUM PERSPECTIVE: APPLICABILITY AND FUNCTIONALITY 19.2 SUM DEVICE CONCEPTS AND CLASSIFICATIONS: 19.3 SUM DEVICES AND ARRAYS IN MEMORY HIERARCHY 19.4 COMPARATIVE ATTRIBUTES OF SUM vs OTHER MEMORIES 20: SUM TECHNOLOGY 20.1 CONSIDERATION AND SELECTION OF DIELECTRIC FILMS FOR SUM DEVICES 20.2 INTEGRATION SCHEME FOR SUM TECHNOLOGY 20.3 STACK DESIGNS for SUM DEVICES 21: BAND ENGINEERING FOR SUM DEVICES 21.1 BAND ENGINEERING FOR USUM DEVICES 21.2 MULTI-MECHANISM-CARRIER-TRANSPORT (MMCT) USUM DEVICE 21.3 BAND ENGINEERING FOR MSUM DEVICES 21.4 BAND DIAGRAM ILLUSTRATIONS FOR MSUM DEVICES 22: UNIFUNCTIONAL SUM: THE USUM CELLS AND ARRAY 22.1 FBRAM USUM CELL 22.2 THE GDRAM USUM CELL 22.3 THE GTRAM USUM CELL 22.4 THE CPRAM USUM CELL 22.5 THE FET USUM CELLS 23: MULTIFUNCTIONAL SUM: THE MSUM CELLS AND ARRAYS 23.1 INTEGRATED DRAM-NVRAM MULTILEVEL AND MULTIFUNCTIONAL MSUM CELL 23.2 The BAND ENGINEERED DTM MSUM CELLS AND ARRAYS 23.3 OTHER CT-MSUM DEVICES: 23.4 URAM AND OTHER MULTIFUNCTIONAL SILICON-BASED MEMORIES 24: SUM FUNCTIONAL INTEGRATION, PACKAGING AND POTENTIAL APPLICATION 24.1 INTEGRATION AT SILICON TECHNOLOGY / CHIP LEVEL 24.2 INTEGRATION AT PACKAGING LEVEL 24.3 INTEGRATION AT LARGE SYSTEM LEVEL 24.4 INTEGRATION AT FUNCTIONAL AND ARCHITECTURAL LEVEL 24.5 Current NVM and DRAM Market: POTENTIAL SUM APPLICATIONS 24.6 ADVANCED APPLICATIONS