دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Fifth edition] نویسندگان: Parr. John M., Phillips. Charles L., Riskin. Eve Ann سری: ISBN (شابک) : 9780133506471, 0133506479 ناشر: Pearson سال نشر: 2013;2014 تعداد صفحات: xxii, 787 pages: illustrations; زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 62 Mb
در صورت تبدیل فایل کتاب Signals, systems, and transforms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیگنال ها، سیستم ها و تبدیل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ارائه واضح و جامعی از نظریه و کاربردها در سیگنالها، سیستمها و تبدیلها ارائه میکند. این پیشینه ریاضی سیگنال ها و سیستم ها، از جمله تبدیل فوریه، سری فوریه، تبدیل لاپلاس، تبدیل فوریه گسسته و گسسته، و تبدیل z را ارائه می دهد.موضوعات کلیدی: کتاب مثالهای MATLAB را در ارائه تئوری و برنامههای کاربردی سیگنال و سیستم ادغام میکند.MARKET:برای مهندسان برق و کامپیوتر.
This book provides a clear, comprehensive presentation of both the theory and applications in signals, systems, and transforms. It presents the mathematical background of signals and systems, including the Fourier transform, the Fourier series, the Laplace transform, the discrete-time and the discrete Fourier transforms, and the z-transform.KEY TOPICS:The book integrates MATLAB examples into the presentation of signal and system theory and applications.MARKET:For electrical and computer engineers.
Cover Title Page Copyright Page CONTENTS PREFACE 1 INTRODUCTION 1.1 Modeling 1.2 Continuous-Time Physical Systems Electric Circuits Operational Amplifier Circuits Simple Pendulum DC Power Supplies Analogous Systems 1.3 Samplers and Discrete-Time Physical Systems Analog-to-Digital Converter Numerical Integration Picture in a Picture Compact Discs Sampling in Telephone Systems Data-Acquisition System 1.4 MATLAB and SIMULINK 2 CONTINUOUS-TIME SIGNALS AND SYSTEMS 2.1 Transformations of Continuous-Time Signals Time Transformations Amplitude Transformations 2.2 Signal Characteristics Even and Odd Signals Periodic Signals 2.3 Common Signals in Engineering 2.4 Singularity Functions Unit Step Function Unit Impulse Function 2.5 Mathematical Functions for Signals 2.6 Continuous-Time Systems Interconnecting Systems Feedback System 2.7 Properties of Continuous-Time Systems Stability Linearity Summary Problems 3 CONTINUOUS-TIME LINEAR TIME-INVARIANT SYSTEMS 3.1 Impulse Representation of Continuous-Time Signals 3.2 Convolution for Continuous-Time LTI Systems 3.3 Properties of Convolution 3.4 Properties of Continuous-Time LTI Systems Memoryless Systems Invertibility Causality Stability Unit Step Response 3.5 Differential-Equation Models Solution of Differential Equations General Case Relation to Physical Systems 3.6 Terms in the Natural Response Stability 3.7 System Response for Complex-Exponential Inputs Linearity Complex Inputs for LTI Systems Impulse Response 3.8 Block Diagrams Direct Form I Direct Form II nth-Order Realizations Practical Considerations Summary Problems 4 FOURIER SERIES 4.1 Approximating Periodic Functions Periodic Functions Approximating Periodic Functions 4.2 Fourier Series Fourier Series Fourier Coefficients 4.3 Fourier Series and Frequency Spectra Frequency spectra 4.4 Properties of Fourier series 4.5 System Analysis 4.6 Fourier Series Transformations Amplitude Transformations Time Transformations Summary Problems 5 THE FOURIER TRANSFORM 5.1 Definition of the Fourier Transform 5.2 Properties of the Fourier Transform Linearity Time Scaling Time Shifting Time Reversal Time Transformation Duality Convolution Frequency Shifting Time Integration Time Differentiation Frequency Differentiation Symmetry Summary 5.3 Fourier Transforms of Time Functions DC Level Unit Step Function Switched Cosine Pulsed Cosine Exponential Pulse Fourier Transforms of Periodic Functions Summary 5.4 Application of the Fourier Transform Frequency Response of Linear Systems Frequency Spectra of Signals Summary 5.5 Energy and Power Density Spectra Energy Density Spectrum Power Density Spectrum Power and Energy Transmission Summary Summary Problems 6 APPLICATIONS OF THE FOURIER TRANSFORM 6.1 Ideal Filters 6.2 Real Filters RC Low-Pass Filter Butterworth Filter Bandpass Filters Active Filters Summary 6.3 Bandwidth Relationships 6.4 Sampling Continuous-Time Signals Impulse Sampling Shannon’s Sampling Theorem Practical Sampling 6.5 Reconstruction of Signals from Sample Data Interpolating Function Digital-to-Analog Conversion Quantization Error 6.6 Sinusoidal Amplitude Modulation Frequency-Division Multiplexing 6.7 Pulse-Amplitude Modulation Time-Division Multiplexing Flat-Top PAM Summary Problems 7 THE LAPLACE TRANSFORM 7.1 Definitions of Laplace Transforms 7.2 Examples 7.3 Laplace Transforms of Functions 7.4 Laplace Transform Properties Real Shifting Differentiation Integration 7.5 Additional Properties Multiplication by t Initial Value Final Value Time Transformation 7.6 Response of LTI systems Initial Conditions Transfer Functions Convolution Transforms with Complex Poles Functions with Repeated Poles 7.7 LTI Systems Characteristics Causality Stability Invertibility Frequency Response Step Response 7.8 Bilateral Laplace Transform Region of Convergence Bilateral Transform from Unilateral Tables Inverse Bilateral Laplace Transform 7.9 Relationship of the Laplace Transform to the Fourier Transform Summary Problems 8 STATE VARIABLES FOR CONTINUOUS-TIME SYSTEMS 8.1 State-Variable Modeling 8.2 Simulation Diagrams 8.3 Solution of State Equations Laplace-Transform Solution Convolution Solution Infinite Series Solution 8.4 Properties of the State-Transition Matrix 8.5 Transfer Functions Stability 8.6 Similarity Transformations Transformations Properties Summary Problems 9 DISCRETE-TIME SIGNALS AND SYSTEMS 9.1 Discrete-Time Signals and Systems Unit Step and Unit Impulse Functions Equivalent Operations 9.2 Transformations of Discrete-Time signals Time Transformations Amplitude Transformations 9.3 Characteristics of Discrete-Time signals Even and Odd Signals Signals Periodic in n Signals Periodic in Ω 9.4 Common Discrete-Time Signals 9.5 Discrete-Time Systems Interconnecting Systems 9.6 Properties of Discrete-Time systems Systems with Memory Invertibility Inverse of a System Causality Stability Time Invariance Linearity Summary Problems 10 DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS 10.1 Impulse Representation of Discrete-Time Signals 10.2 Convolution for Discrete-Time systems Properties of Convolution 10.3 Properties of Discrete-Time LTI systems Memory Invertibility Causality Stability Unit Step Response 10.4 Difference-Equation Models Difference-Equation Models Classical Method Solution by Iteration 10.5 Terms in the Natural Response Stability 10.6 Block Diagrams Two Standard Forms 10.7 System Response for Complex-Exponential Inputs Linearity Complex Inputs for LTI Systems Stability Sampled Signals Impulse Response Summary Problems 11 THE Z-TRANSFORM 11.1 Definitions of z-Transforms 11.2 Examples Two z-Transforms Digital-Filter Example 11.3 z-Transforms of Functions Sinusoids 11.4 z-Transform Properties Real shifting Initial and Final Values 11.5 Additional Properties Time Scaling Convolution in Time 11.6 LTI System Applications Transfer Functions Inverse z-Transform Complex Poles Causality Stability Invertibility Frequency Response 11.7 Bilateral z-Transform Bilateral Transforms Regions of Convergence Inverse Bilateral Transforms Summary Problems 12 FOURIER TRANSFORMS OF DISCRETE-TIME SIGNALS 12.1 Discrete-Time Fourier Transform z-Transform 12.2 Properties of the Discrete-Time Fourier Transform Periodicity Linearity Time Shift Frequency Shift Symmetry Time Reversal Convolution in Time Convolution in Frequency Multiplication by n Parseval’s Theorem 12.3 Discrete-Time Fourier Transform of Periodic Sequences 12.4 Discrete Fourier Transform Shorthand Notation for the DFT Frequency Resolution of the DFT Validity of the DFT Summary 12.5 Fast Fourier Transform Decomposition-in-Time Fast Fourier Transform Algorithm Decomposition-in-Frequency Fast Fourier Transform Summary 12.6 Applications of the Discrete Fourier Transform Calculation of Fourier Transforms Convolution Filtering Correlation Energy Spectral Density Estimation Summary 12.7 The Discrete Cosine Transform Summary Problems 13 STATE VARIABLES FOR DISCRETE-TIME SYSTEMS 13.1 State-Variable Modeling 13.2 Simulation Diagrams 13.3 Solution of State Equations Recursive Solution z-Transform Solution 13.4 Properties of the State Transition Matrix 13.5 Transfer Functions Stability 13.6 Similarity Transformations Properties Summary Problems APPENDICES A. Integrals and Trigonometric Identities Integrals Trigonometric Identities B. Leibnitz’s and L’Hôpital’s Rules Leibnitz’s Rule L’Hôpital’s Rule C. Summation Formulas for Geometric Series D. Complex Numbers and Euler’s Relation Complex-Number Arithmetic Euler’s Relation Conversion Between Forms E. Solution of Differential Equations Complementary Function Particular Solution General Solution Repeated Roots F. Partial-Fraction Expansions G. Review of Matrices Algebra of Matrices Other Relationships H. Answers to Selected Problems I. Signals and Systems References INDEX A B C D E F G H I J L M N O P Q R S T U V W Y Z