دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Xianfeng Zhang. Wei Xiong سری: Elsevier Series in Mechanics of Advanced Materials ISBN (شابک) : 0128195207, 9780128195208 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 256 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 مگابایت
در صورت تبدیل فایل کتاب Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فشرده سازی شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فشرده شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره یک نمای کلی جامع از مکانیک، سینتیک و رفتار فیزیکی و شیمیایی ناشی از واکنش ناشی از شوک و فشردگی شوک در ساختار پرانرژی چند منظوره ارائه میکند. مواد (MESM). این کتاب دانش اساسی در مورد امواج شوک و معادله حالت (EOS)، پارامترهای شوک، سینتیک واکنش، تطبیق امپدانس و موارد دیگر را پوشش میدهد. علاوه بر این، به موضوعات پیشرفتهتری مانند روشهای آنالیز تجربی، تکنیکهای مدلسازی عددی (از نرخهای شبه استاتیک تا کرنش بالا، از جمله مدلهای فروپاشی خالی)، نحوه تغییر EOS هنگام واکنش و انفجار، و موارد دیگر میپردازد. span>
فصل های پایانی چگونگی به دست آوردن منحنی های EOS را از آزمایش ها و روش های مختلف آزمایش و مدل های عددی برای جامدات متخلخل غیر واکنشی و کامپوزیت های ذرات، از جمله مدل های جریان واکنش پذیر 1 بعدی، پوشش می دهند. آزمایشهای ضربهای با صفحه فلایر، و همچنین کاربردهای هیدروکدها و روشهای مبتنی بر چارچوب لاگرانژی نیز مورد بحث قرار گرفته است.
Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials provides an exhaustive overview of the mechanics, kinetics and physio-chemical behavior caused by shock-induced reaction and shock compression on multifunctional energetic structural materials (MESMs). The book covers foundational knowledge on shock waves and Equation of State (EOS), shock parameters, reaction kinetics, impedance matching, and more. In addition, it looks at more advanced subjects such as experimental analysis methods, numerical modeling techniques (from quasi-static to high-strain rates, including void collapse models), how EOS changes when reaction and detonation are involved, and more.
Final chapters cover how to obtain EOS curves from experiments and various testing methods and numerical models for non-reactive porous solids and particulate composites, including 1-D reactive flow models. Flyer plate impact experiments are also discussed, as are the applications of hydrocodes and Lagrangian-framework-based methods.
Front Cover Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials Copyright Contents Preface Acknowledgments Chapter 1: Preparation and microstructures of MESMs Introduction Static pressing Raw powder preparation Mixing of the powders Quasistatic pressing Sintering Explosive consolidation Raw material preparation Mixing of the powders Explosion consolidation Specimen processing Casting and curing Raw material preparation Mixing and drying of powders Heating of the polymer and mixing with powder mixtures Mixing with a hardener and solvent Curing in the molds Cold rolling Original foil preparation First rolling pass Successive rolling Physical vapor deposition PVD cases Combination of PVD with cold rolling References Chapter 2: Hugoniot equation of state (EOS) for MESMs Basic principles of shock waves Hugoniot EOS for solid materials Hugoniot EOS for solid multicomponent mixtures Cold internal energy mixture theory Applications Hugoniot EOS for multicomponent mixtures with porosity Wu and Jings method Cold specific volume of solid and porous materials Applications Discussion Shock temperature of MESMs Shock temperature along constant volume Shock temperature along constant pressure EOS of porous materials considering the thermo-electronic contribution Applications References Chapter 3: Thermochemical modeling on shock-induced chemical reaction of MESMs Introduction Mechanism of shock reaction of MESMs Classification of MESMs Shock-induced reactions and shock-assisted reactions Thermochemical model Reaction efficiency of SICR Applications Discussion on parameters of reaction kinetics model Hugoniot EOS for reaction of MESMs Mixture theory for the equation of state of reactants and products in a partial chemical reaction Pressure and temperature rise for a partial reaction of MESMs Applications Discussion References Chapter 4: Mesoscale modeling of shock compression of MESMs Introduction Mesoscale characters of MESMs Typical microstructures of MESMs Typical microstructures of powder-compacted MESMs Typical microstructures of multilayered MESMs Mesoscale characters of MESMs Characteristics of particle shape Characteristics of particle size Characteristics of particle distribution Mathematical description on powder-compacted MESMs Shape parameter of particles Size parameter of particles Position parameter of particles Theoretical mass density of particles Mesoscale modeling of shock compression of MESMs Mesoscale numerical model based on the statistical distribution law Generation method Mesoscale model for typical powder mixtures of MESMs Mesoscale model based on SEM Generation method Mesoscale geometrical model of the typical heterogeneous material Mesoscale characters of MESMs under shock compression Loading and boundary conditions Material model Equation of state Strength model Calculation method on the Us-Up relation Mesoscale simulation based on the statistical distribution law Verification of the modeling method Analysis of typical effects on shock compression behavior Mesoscale simulation based on SEM Validation of the modeling method Analysis of typical effects on shock compression behavior References Chapter 5: Multiscale modeling on shock-induced reaction of MESMs Introduction Mass transport mechanism Reaction-diffusion equation One-dimensional reaction-diffusion model Discussions on transport rate Multiscale models based on the infinite-transport-rate assumption (Qiao et al., 2013) Procedures of the multiscale approach Mesoscale simulations on the shock compression behaviors of MESMs The simulation model Results of the mesoscale simulations Thermochemical model Multiscale modeling on the SICR of MESMs Homogenization of the mesoscale simulation results Calculations of the extent of chemical reaction Temperature and pressure rise induced by chemical reactions Temperature equilibrium and energy released Multiscale simulation with limited transport rate Simulation with regular transport rates (Lomov et al., 2012) Simulation with high transport rates (A V S and Basu, 2015) Multiscale simulation with limited transport rate considering the effects of temperature and states of stress Multiscale modeling on chemical reactions (Reding, 2010) Chemical reaction model considering effects of temperature and stress (Reding and Hanagud, 2009) Granular level reaction analysis (Reding and Hanagud, 2009) MSR model analysis (Reding, 2010) Macroscale simulation on gas-gun experiments (Reding, 2010) References Chapter 6: Mechanical testing of MESMs Introduction Quasistatic compression tests Experimental setup Deformation and fracture modes for typical MESMs Stress-strain relationships for typical MESMs Initiation phenomenon under quasistatic compression Split-Hopkinson pressure bar (SHPB) compression experiments SHPB system Recycled specimens and strain circuit outputs Strain-stress relationships Flyer plate impact experiments Experimental setup Launching system Gas guns Pulsed lasers Explosive plane wave generators Construction of the specimen assembly(Eakins, 2007) Typical flyer plate impact experimental results for MESMs Typical measured stress profiles Shock densification of MESMs References Chapter 7: Experimental studies on chemical reaction of MESMs Introduction DTA and DSC analysis Flyer plate impact experiments Two-step impact initiation experiment The original two-step impact initiation experiment Experimental setup The quasisealed test chamber Launching the system and assumptions for the experiments Typical SICR results Impact initiation and the reaction process Description of the data from the sensor Main parameters in the experimental results The peak value of the quasistatic pressure Reaction efficiency Specific chemical energy Hugoniot parameters Analysis on typical effects on shock reaction behavior of MESMs Additives Impact velocities Microstructures Other experimental methods Rod-on-anvil Taylor impact tests Taylor impact tests on MESMs Modified rod-on-anvil Taylor impact tests on MESMs Modified SHPB compression experiments Drop weight experiments References Chapter 8: Application of MESMs Introduction Reactive shaped charge liners Shaped charges Reactive shaped charge liners Penetration performance tests Experimental setup Typical experimental results Experimental methods to measure jet energy release characteristics Experimental setup Damage on the cover plate (Guo, Zheng, Yu, Ge, and Wang, 2019) Quasistatic pressure test results (Li, Liu, and Xiao, 2020) Ground reflected overpressure caused by internal blast (Zhang et al., 2021) RM-enhanced warhead casing Schematic of the warhead based on RM casing Blast chamber experiments Experimental setup Typical experimental results Free field experiments (Du et al., 2020) Experimental setup The growth and reaction process of the explosion fireballs Distribution characteristics of the temperature field in the process of explosion Propagation characteristics of air shock waves Fracture characteristics of recovered fragments Reactive fragments RM-enhanced projectile used in penetration munition Space debris shield structure using MESMs Schematic of the space debris shield structure using MESMs Experimental setup Typical experimental results Damage of the rear wall Debris cloud Temperature change during hypervelocity impact References Index Back Cover