ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials

دانلود کتاب فشرده سازی شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره

Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials

مشخصات کتاب

Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials

دسته بندی: مواد
ویرایش:  
نویسندگان:   
سری: Elsevier Series in Mechanics of Advanced Materials 
ISBN (شابک) : 0128195207, 9780128195208 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 256 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فشرده سازی شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فشرده سازی شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره



فشرده شوک و واکنش شیمیایی مواد ساختاری پرانرژی چند منظوره یک نمای کلی جامع از مکانیک، سینتیک و رفتار فیزیکی و شیمیایی ناشی از واکنش ناشی از شوک و فشردگی شوک در ساختار پرانرژی چند منظوره ارائه می‌کند. مواد (MESM). این کتاب دانش اساسی در مورد امواج شوک و معادله حالت (EOS)، پارامترهای شوک، سینتیک واکنش، تطبیق امپدانس و موارد دیگر را پوشش می‌دهد. علاوه بر این، به موضوعات پیشرفته‌تری مانند روش‌های آنالیز تجربی، تکنیک‌های مدل‌سازی عددی (از نرخ‌های شبه استاتیک تا کرنش بالا، از جمله مدل‌های فروپاشی خالی)، نحوه تغییر EOS هنگام واکنش و انفجار، و موارد دیگر می‌پردازد. span>

فصل های پایانی چگونگی به دست آوردن منحنی های EOS را از آزمایش ها و روش های مختلف آزمایش و مدل های عددی برای جامدات متخلخل غیر واکنشی و کامپوزیت های ذرات، از جمله مدل های جریان واکنش پذیر 1 بعدی، پوشش می دهند. آزمایش‌های ضربه‌ای با صفحه فلایر، و همچنین کاربردهای هیدروکدها و روش‌های مبتنی بر چارچوب لاگرانژی نیز مورد بحث قرار گرفته است.


توضیحاتی درمورد کتاب به خارجی

Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials provides an exhaustive overview of the mechanics, kinetics and physio-chemical behavior caused by shock-induced reaction and shock compression on multifunctional energetic structural materials (MESMs). The book covers foundational knowledge on shock waves and Equation of State (EOS), shock parameters, reaction kinetics, impedance matching, and more. In addition, it looks at more advanced subjects such as experimental analysis methods, numerical modeling techniques (from quasi-static to high-strain rates, including void collapse models), how EOS changes when reaction and detonation are involved, and more.

Final chapters cover how to obtain EOS curves from experiments and various testing methods and numerical models for non-reactive porous solids and particulate composites, including 1-D reactive flow models. Flyer plate impact experiments are also discussed, as are the applications of hydrocodes and Lagrangian-framework-based methods.



فهرست مطالب

Front Cover
Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials
Copyright
Contents
Preface
Acknowledgments
Chapter 1: Preparation and microstructures of MESMs
	Introduction
	Static pressing
		Raw powder preparation
		Mixing of the powders
		Quasistatic pressing
		Sintering
	Explosive consolidation
		Raw material preparation
		Mixing of the powders
		Explosion consolidation
		Specimen processing
	Casting and curing
		Raw material preparation
		Mixing and drying of powders
		Heating of the polymer and mixing with powder mixtures
		Mixing with a hardener and solvent
		Curing in the molds
	Cold rolling
		Original foil preparation
		First rolling pass
		Successive rolling
	Physical vapor deposition
		PVD cases
		Combination of PVD with cold rolling
	References
Chapter 2: Hugoniot equation of state (EOS) for MESMs
	Basic principles of shock waves
	Hugoniot EOS for solid materials
	Hugoniot EOS for solid multicomponent mixtures
		Cold internal energy mixture theory
		Applications
	Hugoniot EOS for multicomponent mixtures with porosity
		Wu and Jings method
		Cold specific volume of solid and porous materials
		Applications
		Discussion
	Shock temperature of MESMs
		Shock temperature along constant volume
		Shock temperature along constant pressure
		EOS of porous materials considering the thermo-electronic contribution
		Applications
	References
Chapter 3: Thermochemical modeling on shock-induced chemical reaction of MESMs
	Introduction
	Mechanism of shock reaction of MESMs
		Classification of MESMs
		Shock-induced reactions and shock-assisted reactions
	Thermochemical model
		Reaction efficiency of SICR
		Applications
		Discussion on parameters of reaction kinetics model
	Hugoniot EOS for reaction of MESMs
		Mixture theory for the equation of state of reactants and products in a partial chemical reaction
		Pressure and temperature rise for a partial reaction of MESMs
		Applications
	Discussion
	References
Chapter 4: Mesoscale modeling of shock compression of MESMs
	Introduction
	Mesoscale characters of MESMs
		Typical microstructures of MESMs
			Typical microstructures of powder-compacted MESMs
			Typical microstructures of multilayered MESMs
		Mesoscale characters of MESMs
			Characteristics of particle shape
			Characteristics of particle size
			Characteristics of particle distribution
		Mathematical description on powder-compacted MESMs
			Shape parameter of particles
			Size parameter of particles
			Position parameter of particles
			Theoretical mass density of particles
	Mesoscale modeling of shock compression of MESMs
		Mesoscale numerical model based on the statistical distribution law
			Generation method
			Mesoscale model for typical powder mixtures of MESMs
		Mesoscale model based on SEM
			Generation method
			Mesoscale geometrical model of the typical heterogeneous material
	Mesoscale characters of MESMs under shock compression
		Loading and boundary conditions
		Material model
			Equation of state
			Strength model
		Calculation method on the Us-Up relation
		Mesoscale simulation based on the statistical distribution law
			Verification of the modeling method
			Analysis of typical effects on shock compression behavior
		Mesoscale simulation based on SEM
			Validation of the modeling method
			Analysis of typical effects on shock compression behavior
	References
Chapter 5: Multiscale modeling on shock-induced reaction of MESMs
	Introduction
	Mass transport mechanism
		Reaction-diffusion equation
		One-dimensional reaction-diffusion model
		Discussions on transport rate
	Multiscale models based on the infinite-transport-rate assumption (Qiao et al., 2013)
		Procedures of the multiscale approach
		Mesoscale simulations on the shock compression behaviors of MESMs
			The simulation model
			Results of the mesoscale simulations
		Thermochemical model
		Multiscale modeling on the SICR of MESMs
			Homogenization of the mesoscale simulation results
			Calculations of the extent of chemical reaction
			Temperature and pressure rise induced by chemical reactions
			Temperature equilibrium and energy released
	Multiscale simulation with limited transport rate
		Simulation with regular transport rates (Lomov et al., 2012)
		Simulation with high transport rates (A V S and Basu, 2015)
	Multiscale simulation with limited transport rate considering the effects of temperature and states of stress
		Multiscale modeling on chemical reactions (Reding, 2010)
		Chemical reaction model considering effects of temperature and stress (Reding and Hanagud, 2009)
		Granular level reaction analysis (Reding and Hanagud, 2009)
		MSR model analysis (Reding, 2010)
		Macroscale simulation on gas-gun experiments (Reding, 2010)
	References
Chapter 6: Mechanical testing of MESMs
	Introduction
	Quasistatic compression tests
		Experimental setup
		Deformation and fracture modes for typical MESMs
		Stress-strain relationships for typical MESMs
		Initiation phenomenon under quasistatic compression
	Split-Hopkinson pressure bar (SHPB) compression experiments
		SHPB system
		Recycled specimens and strain circuit outputs
		Strain-stress relationships
	Flyer plate impact experiments
		Experimental setup
		Launching system
			Gas guns
			Pulsed lasers
			Explosive plane wave generators
		Construction of the specimen assembly(Eakins, 2007)
		Typical flyer plate impact experimental results for MESMs
			Typical measured stress profiles
			Shock densification of MESMs
	References
Chapter 7: Experimental studies on chemical reaction of MESMs
	Introduction
	DTA and DSC analysis
	Flyer plate impact experiments
	Two-step impact initiation experiment
		The original two-step impact initiation experiment
			Experimental setup
			The quasisealed test chamber
			Launching the system and assumptions for the experiments
		Typical SICR results
			Impact initiation and the reaction process
			Description of the data from the sensor
		Main parameters in the experimental results
			The peak value of the quasistatic pressure
			Reaction efficiency
			Specific chemical energy
			Hugoniot parameters
		Analysis on typical effects on shock reaction behavior of MESMs
			Additives
			Impact velocities
			Microstructures
	Other experimental methods
		Rod-on-anvil Taylor impact tests
			Taylor impact tests on MESMs
			Modified rod-on-anvil Taylor impact tests on MESMs
		Modified SHPB compression experiments
		Drop weight experiments
	References
Chapter 8: Application of MESMs
	Introduction
	Reactive shaped charge liners
		Shaped charges
		Reactive shaped charge liners
		Penetration performance tests
			Experimental setup
			Typical experimental results
		Experimental methods to measure jet energy release characteristics
			Experimental setup
			Damage on the cover plate (Guo, Zheng, Yu, Ge, and Wang, 2019)
			Quasistatic pressure test results (Li, Liu, and Xiao, 2020)
			Ground reflected overpressure caused by internal blast (Zhang et al., 2021)
	RM-enhanced warhead casing
		Schematic of the warhead based on RM casing
		Blast chamber experiments
			Experimental setup
			Typical experimental results
		Free field experiments (Du et al., 2020)
			Experimental setup
			The growth and reaction process of the explosion fireballs
			Distribution characteristics of the temperature field in the process of explosion
			Propagation characteristics of air shock waves
			Fracture characteristics of recovered fragments
	Reactive fragments
	RM-enhanced projectile used in penetration munition
	Space debris shield structure using MESMs
		Schematic of the space debris shield structure using MESMs
		Experimental setup
		Typical experimental results
			Damage of the rear wall
			Debris cloud
			Temperature change during hypervelocity impact
	References
Index
Back Cover




نظرات کاربران