دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Mukund R. Patel
سری:
ISBN (شابک) : 9781000413663, 1000413675
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: [428]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Shipboard electrical power systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های برق کشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش دوم Shipboard Electrical Power Systems به پیشرفت های جدید در این زمینه به سرعت در حال رشد می پردازد. این کتاب با تمرکز بر روند صنعت به سمت نیروی محرکه الکتریکی برای کشتیهای کروز، نیروی دریایی و تجاری، به مهندسان جدید یا با تجربه در تسلط بر فناوریهای پیشرفته مورد نیاز برای طراحی سیستم قدرت، کنترل، حفاظت و استفاده اقتصادی از نیرو کمک میکند. این کتاب با پوشش آخرین استانداردهای انتشار در کشتیها و فناوریهای انرژی پاک لازم برای رعایت چنین مقررات سختگیرانه، اطلاعات ضروری در مورد طراحی، تجزیه و تحلیل و بهرهبرداری سیستم قدرت را گردآوری میکند و بهطور منحصربهفرد هر سه را در یک جلد گردآوری میکند. این کتاب با پوشش اصول اولیه سیستم قدرت، به جزئیات تولید برق، ماشینهای الکتریکی و باتریها، با فصلهای جدید در مورد نیروی محرکه الکتریکی، مقررات انتشار کشتی و فناوریهای انرژی پاک ادامه میدهد. ویرایش دوم که برای بازتاب این میدان به سرعت در حال تغییر به روز شده است، به وضوح مفاهیم پیچیده الکتریکی را با استفاده از قیاس های مکانیکی و هیدرولیکی برای کمک به مهندسان دریایی در درک عناصر دشوار میدان توضیح می دهد. این کتاب یک منبع ضروری برای دانشجویان مهندسی خوب و مهندسین حرفه ای است. خواندن این کتاب درسی برای دانشجویان مهندسی دریایی، سیستمهای برق، و مهندسی برق، در کنار مهندسانی که بر روی کشتیهای تجاری و نیروی دریایی، بنادر، خشکی و دکلهای دریایی کار میکنند ضروری است.
The second edition of Shipboard Electrical Power Systems addresses new developments in this rapidly growing field. Focusing on the industry trend toward electric propulsion for cruise, navy, and commercial ships, the book aids new or experienced engineers in mastering the cutting-edge technologies required for power system design, control, protection, and economic use of power. Covering the latest emission standards on ships, and the clean power technologies necessary to meet such stringent regulations, the book compiles essential information on power system design, analysis and operation, uniquely bringing all three together under one cover. Beginning by covering power system basics, the book goes on to detail power generation, electrical machines and batteries, with new chapters on electric propulsion, shipboard emission regulations, and clean power technologies. Updated throughout to reflect this rapidly changing field, the second edition clearly explains complicated electrical concepts using mechanical and hydraulic analogies to aid marine engineers in understanding difficult elements of the field. The book is an indispensable resource for well-rounded engineering students and professional engineers. This textbook is essential reading for students of marine engineering, electrical power systems, and electrical engineering, alongside engineers working on commercial and navy ships, on ports, on land, and offshore rigs.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Acronyms and Abbreviations Acknowledgments About the Author Introduction Chapter 1: AC Power Fundamentals 1.1. Current Voltage Power and Energy 1.2. Alternating Current 1.2.1. RMS Value and Average Power 1.2.2. Polarity Marking in AC 1.3. Ac Phasor 1.3.1. Operator j for 90° Phase Shift 1.3.2 Three Ways of Writing Phasors 1.3.3. Phasor Form Conversion 1.4. Phasor Algebra Review 1.5. Single-phase Ac Power Circuit 1.5.1. Series R-L-C Circuit 1.5.2. Impedance Triangle 1.5.3. Circuit Laws and Theorems 1.6. Ac Power in Complex Form 1.7. Reactive Power 1.8. Three-Phase Ac Power System 1.8.1. Balanced y- and Δ-Connected systems 1.8.2. Y-Δ Equivalent Impedance Conversion Further Reading Chapter 2: Shipboard Power System Architectures 2.1. Types of Ship Drives 2.2. Electrical Design Tasks 2.3. Electrical Load Analysis 2.3.1. Load Factor or Service Factor 2.3.2. Load Table Compilation 2.4. Power System Configurations 2.4.1. Basic Conventional Ship 2.4.2. Large Cargo Ship 2.4.3. Large Cruise Ship 2.4.4. Ring Bus in Navy Ship 2.4.5. ABS-R2 Redundancy Class of Ship 2.4.6. ABS-R2S Redundancy with Separation 2.4.7. ABS-R2S+ with Two-Winding Propulsion Motors 2.4.8. Clean Power Bus for Harmonic-Sensitive Loads 2.4.9. Emergency Generator Engine Starting System 2.5. Cold-ironing/shore Power 2.6. Efficiency and Reliability of Chain 2.7. Shipboard Circuit Designation 2.8. Ship Simulator 2.9. Systems of Units Further Reading Chapter 3: Common Aspects of Power Equipment 3.1. Faraday’s Law and Coil Voltage Equation 3.2. Mechanical Force and Torque 3.3. Electrical Equivalent of Newton’s Third Law 3.4. Power Losses in Electrical Machine 3.5. Maximum Efficiency Operating Point 3.6. Thevenin Equivalent Source Model 3.7. Voltage Drop and Regulation 3.8. Load Sharing Among Sources 3.8.1. Static Sources in Parallel 3.8.2. Load Adjustment 3.9. Power Rating of Equipment 3.9.1. Temperature Rise under Load 3.9.2. Service Life under Overload 3.10. Temperature Effect on Resistance Further Reading Chapter 4: AC Generator 4.1. Terminal Performance 4.2. Electrical Model 4.3. Electrical Power Output 4.3.1. Field Excitation Effect 4.3.2. Power Capability Limits 4.3.3. Round and Salient Pole Rotors 4.4. Transient Stability Limit 4.5. Equal Area Criteria of Transient Stability 4.6. Speed and Frequency Regulations 4.7. Load Sharing Among ac Generators 4.8. Isosynchronous Generator 4.9. Excitation Methods 4.10. Short Circuit Ratio 4.11. Automatic Voltage Regulator Further Reading Chapter 5: AC and DC Motors 5.1. Induction Motor 5.1.1. Performance Characteristics 5.1.2. Starting Inrush kVA Code 5.1.3. Torque-Speed Characteristic Matching 5.1.4. Motor Control Center 5.1.5. Performance at Different Frequency and Voltage 5.2. Synchronous Motor 5.3. Motor Hp and Line Current 5.4. Dual-use Motors 5.5. Unbalanced Voltage Effect 5.6. Dc Motor 5.7. Universal (series) Motor ac or Dc 5.8. Special Motors for Ship Propulsion 5.9. Torque Versus Speed Comparison Further Reading Chapter 6: Transformer 6.1. Transformer Categories 6.2. Types of Transformers 6.3. Selection of kVA Rating 6.4. Transformer Cooling Classes 6.5. Three-phase Transformer Connections 6.6. Full-δ and Open-δ Connections 6.7. Magnetizing Inrush Current 6.8. Single-line Diagram Model 6.9. Three-winding Transformer 6.10. Percent and per Unit Systems 6.11. Equivalent Impedance at Different Voltage 6.12. Continuous Equivalent Circuit Through Transformer 6.13. Influence of Transformer Impedance Further Reading Chapter 7: Power Cable 7.1. Conductor Gage 7.2. Cable Insulation 7.3. Conductor Ampacity 7.4. Cable Electrical Model 7.5. Skin and Proximity Effects 7.6. Cable Design 7.7. Marine and Special Cables 7.8. Cable Routing and Installation Further Reading Chapter 8: Power Distribution 8.1. Typical Distribution Scheme 8.2. Grounded and Ungrounded Systems 8.3. Ground Fault Detection Schemes 8.4. Distribution Feeder Voltage Drop 8.4.1. Voltage Drop During Motor Starting 8.4.2. Voltage Boost by Capacitors 8.4.3. System Voltage Drop Analysis 8.5. Bus Bars Electrical Parameters 8.6. High-frequency Distribution 8.7. Switchboard and Switchgear 8.7.1. Automatic Bus Transfer 8.7.2. Disconnect Switch Further Reading Chapter 9: Fault Current Analysis 9.1. Types and Frequency of Faults 9.2. Fault Analysis Model 9.3. Asymmetrical Fault Transient 9.3.1. Simple Physical Explanation 9.3.2. Rigorous Mathematical Analysis 9.4. Fault Current Offset Factor 9.5. Fault Current Magnitude 9.5.1. Symmetrical Fault Current 9.5.2. Asymmetrical Fault Current 9.5.3. Transient and Subtransient Reactance 9.5.4. Generator Terminal Fault Current 9.5.5. Transformer Terminal Fault Current 9.6. Motor Contribution to Fault Current 9.7. Current Limiting Series Reactor 9.8. Unsymmetrical Faults 9.9. Circuit Breaker Selection Simplified Further Reading Chapter 10: System Protection 10.1. Fuse 10.1.1. Fuse Selection 10.1.2. Types of Fuse 10.2. Overload Protection 10.3. Electromechanical Relay 10.4. Circuit Breaker 10.4.1. Types of Circuit Breaker 10.4.2. Circuit Breaker Selection 10.5. Differential Protection of Generator 10.6. Differential Protection of Bus and Feeders 10.7. Ground Fault Current Interrupter 10.8. Transformer Protection 10.9. Motor Branch Circuit Protection 10.10. Lightning and Switching Voltage Protection 10.11. Surge Protection for Small Sensitive Loads 10.12. Protection Coordination 10.13. Health Monitoring 10.14. Arc Flash Analysis Further Reading Chapter 11: Economic Use of Power 11.1. Economic Analysis 11.1.1. Cash Flow with Borrowed Capital 11.1.2. Payback of Self-Financed Capital 11.2. Power Loss Capitalization 11.3. High Efficiency Motor 11.4. Power Factor Improvement 11.4.1. Capacitor Size Determination 11.4.2. Parallel Resonance with Source 11.4.3. Safety with Capacitors 11.4.4. Difference between PF and Efficiency 11.5. Energy Storage During Night 11.6. Variable Speed Motor Drives ac and Dc 11.7. Regenerative Braking 11.7.1. Induction Motor Torque versus Speed Curve 11.7.2. Induction Motor Braking 11.7.3. DC Motor Braking 11.7.4. New York and Oslo Metro Trains Further Reading Chapter 12: Electrochemical Battery 12.1. Major Rechargeable Batteries 12.1.1. Lead Acid 12.1.2. Nickel Cadmium 12.1.3. Nickel Metal Hydride 12.1.4. Lithium Ion 12.1.5. Lithium Polymer 12.1.6. Sodium Battery 12.2. Electrical Circuit Model 12.3. Performance Characteristics 12.3.1. Charge/Discharge Voltages 12.3.2. c/d Ratio (Charge Efficiency) 12.3.3. Round Trip Energy Efficiency 12.3.4. Self-Discharge and Trickle-Charge 12.3.5. Memory Effect in NiCd 12.3.6. Temperature Effects 12.4. Battery Life 12.5. Battery Types Compared 12.6. More on the Lead-acid Battery 12.7. Battery Design Process 12.8. Safety and Environment Further Reading Chapter 13: Electric Propulsion 13.1. State of Electric Propulsion 13.2. Types of Electric Propulsion Drive 13.2.1. Azimuth Z-drive 13.2.2. Azimuth Pod-Drive 13.3. Propulsion Power System Configurations 13.3.1. Separate Electrical Propulsion Power 13.3.2. Integrated Electric Propulsion Power 13.4. Advantages of Electric Propulsion 13.4.1. Advantages to Cruise and Navy Ships 13.4.2. Special Advantages to Navy Ships 13.5. ac Vs. Dc Power Option 13.6. Optimum Voltage Level 13.7. Propulsion Power Requirement 13.8. Ship Speed Vs. Fuel Consumption 13.9. Hybrid Propulsion 13.9.1. Hybrid Tug Boat 13.9.2. Hybrid Ferry Further Reading Chapter 14: Ship Emission Regulations and Clean Power Technologies 14.1. Overview of Ship Emissions 14.2. Key Marine Air Pollutants 14.3. Marine Emission Regulations 14.4. Means of Emission Reduction 14.4.1. Low Sulfur Fuel Switching 14.4.2. Speed Reduction (Slow Steaming) 14.4.3. Using Shore power at Port (Cold Ironing) 14.4.4. Using Liquified Natural Gas (LNG) 14.4.5. Using Scrubbers 14.5. Clean Power Technologies 14.5.1. Fuel Cell Power 14.5.1.1. Electrochemistry 14.5.1.2. Electrical Performance 14.5.1.3. Types of Fuel Cell 14.5.1.4. Fuel Cells for Navy and Military Use 14.5.1.5. Fuel Cell in Merchant Ships 14.5.2. Lithium-Ion Batteries 14.5.3. Solar Photovoltaics 14.5.4. Wind Power Further Reading Chapter 15: Marine Industry Standards 15.1. Standard-issuing Organizations 15.2. Classification Societies 15.3. Ieee Standard-45 15.4. Code of Federal Regulations 15.5. Military-Std-1399 Further Reading Appendix A: Symmetrical Components Appendix B: Operating Ships Power System Data Example Index