دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Anthony F. Molland, Stephen R. Turnock, Dominic A. Hudson سری: ISBN (شابک) : 9781107142060, 1107142067 ناشر: Cambridge University Press سال نشر: 2017 تعداد صفحات: 627 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 40 مگابایت
در صورت تبدیل فایل کتاب Ship Resistance and Propulsion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقاومت کشتی و نیروی محرکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه به روز شده یک رویکرد علمی مدرن برای ارزیابی مقاومت کشتی و نیروی محرکه برای طیف وسیعی از انواع کشتی ارائه می دهد.
This updated edition provides a modern scientific approach to evaluating ship resistance and propulsion for a range of ship types.
Contents Preface to the Second Edition Preface to the First Edition Nomenclature Abbreviations Figure Acknowledgements 1 Introduction History Powering: Overall Concept Improvements in Efficiency references (chapter 1) 2 Propulsive Power 2.1 Components of Propulsive Power 2.2 Propulsion Systems 2.3 Definitions 2.4 Components of the Ship Power Estimate 3 Components of Hull Resistance 3.1 Physical Components of Main Hull Resistance 3.1.1 Physical Components 3.1.2 Momentum Analysis of Flow Around Hull 3.1.3 Systems of Coefficients Used in Ship Powering 3.1.4 Measurement of Model Total Resistance 3.1.5 Transverse Wave Interference 3.1.6 Dimensional Analysis and Scaling 3.2 Other Drag Components 3.2.1 Appendage Drag 3.2.2 Air Resistance of Hull and Superstructure 3.2.3 Roughness and Fouling 3.2.4 Wind and Waves 3.2.5 Service Power Margins references (chapter 3) 4 Model–Ship Extrapolation 4.1 Practical Scaling Methods 4.1.1 Traditional Approach: Froude 4.1.2 Form Factor Approach: Hughes 4.2 Geosim Series 4.3 Flat Plate Friction Formulae 4.3.1 Froude Experiments 4.3.2 Schoenherr Formula 4.3.3 The ITTC Formula 4.3.4 Other Proposals for Friction Lines 4.4 Derivation of Form Factor (1 + k) 4.4.1 Model Experiments 4.4.2 CFD Methods 4.4.3 Empirical Methods 4.4.4 Effects of Shallow Water references (chapter 4) 5 Model–Ship Correlation 5.1 Purpose 5.2 Procedures 5.2.1 Original Procedure 5.2.2 ITTC1978 Performance Prediction Method 5.2.3 Summary 5.3 Ship Speed Trials and Analysis 5.3.1 Purpose 5.3.2 Trials Conditions 5.3.3 Ship Condition 5.3.4 Trials Procedures and Measurements 5.3.5 Corrections 5.3.6 Analysis of Correlation Factors and Wake Fraction 5.3.7 Summary 5.3.8 Updated Ship Speed Trials Procedures references (chapter 5) 6 Restricted Water Depth and Breadth 6.1 Shallow Water Effects 6.1.1 Deep Water 6.1.2 Shallow Water 6.2 Bank Effects 6.3 Blockage Speed Corrections 6.4 Squat 6.5 Wave Wash references (chapter 6) 7 Measurement of Resistance Components 7.1 Background 7.2 Need for Physical Measurements 7.3 Physical Measurements of Resistance Components 7.3.1 Skin Friction Resistance 7.3.2 Pressure Resistance 7.3.3 Viscous Resistance 7.3.4 Wave Resistance 7.4 Flow Field Measurement Techniques 7.4.1 Hot-Wire Anemometry 7.4.2 Five-Hole Pitôt Probe 7.4.3 Photogrammetry 7.4.4 Laser-Based Techniques 7.4.5 Summary references (chapter 7) 8 Wake and Thrust Deduction 8.1 Introduction 8.1.1 Wake Fraction 8.1.2 Thrust Deduction 8.1.3 Relative Rotative Efficiency ηR 8.2 Origins of Wake 8.2.1 Potential Wake: wP 8.2.2 Frictional Wake: wF 8.2.3 Wave Wake: wW 8.2.4 Summary 8.3 Nominal and Effective Wake 8.4 Wake Distribution 8.4.1 General Distribution 8.4.2 Circumferential Distribution of Wake 8.4.3 Radial Distribution of Wake 8.4.4 Analysis of Detailed Wake Measurements 8.5 Detailed Physical Measurements of Wake 8.5.1 Circumferential Average Wake 8.5.2 Detailed Measurements 8.6 Computational Fluid Dynamics Predictions of Wake 8.7 Model Self-Propulsion Experiments 8.7.1 Introduction 8.7.2 Resistance Tests 8.7.3 Propeller Open Water Tests 8.7.4 Model Self-Propulsion Tests 8.7.5 Trials Analysis 8.7.6 Wake Scale Effects 8.8 Empirical Data for Wake Fraction and Thrust Deduction Factor 8.8.1 Introduction 8.8.2 Single Screw 8.8.3 Twin Screw 8.8.4 Effects of Speed and Ballast Condition 8.9 Effects of Shallow Water 8.10 Tangential Wake 8.10.1 Origins of Tangential Wake 8.10.2 Effects of Tangential Wake 8.11 Submarine and AUV Wake and Thrust Deduction 8.11.1 Submarine and AUV Wake 8.11.2 Submarine and AUV Thrust Deduction 8.11.3 Submarine and AUV Relative Rotative Efficiency references (chapter 8) 9 Numerical Estimation of Ship Resistance 9.1 Introduction 9.2 Historical Development 9.3 Available Techniques 9.3.1 Navier–Stokes Equations 9.3.2 Incompressible Reynolds Averaged Navier–Stokes Equations (RANS) 9.3.3 Potential Flow 9.3.4 Free Surface 9.4 Interpretation of Numerical Methods 9.4.1 Introduction 9.4.2 Validation of Applied CFD Methodology 9.4.3 Access to CFD 9.5 Thin Ship Theory 9.5.1 Background 9.5.2 Distribution of Sources 9.5.3 Modifications to the Basic Theory 9.5.4 Example Results 9.6 Estimation of Ship Self-Propulsion Using RANS 9.6.1 Background 9.6.2 Mesh Generation 9.6.3 Boundary Conditions 9.6.4 Methodology 9.6.5 Results 9.6.6 Added Resistance in Waves 9.7 Summary references (chapter 9) 10 Resistance Design Data 10.1 Introduction 10.2 Data Sources 10.2.1 Standard Series Data 10.2.2 Other Resistance Data 10.2.3 Regression Analysis of Resistance Data 10.2.4 Numerical Methods 10.3 Selected Design Data 10.3.1 Displacement Ships 10.3.2 Semi-Displacement Craft 10.3.3 Planing Craft 10.3.4 Small Craft 10.3.5 Multihulls 10.3.6 Yachts 10.3.7 Submarines and AUVs 10.3.8 Hydrofoil Craft 10.4 Wetted Surface Area 10.4.1 Background 10.4.2 Displacement Ships 10.4.3 Semi-Displacement Ships, Round-Bilge Forms 10.4.4 Semi-Displacement Ships, Double-Chine Forms 10.4.5 Planing Hulls, Single Chine 10.4.6 Yacht Forms references (chapter 10) 11 Propulsor Types 11.1 Basic Requirements: Thrust and Momentum Changes 11.2 Levels of Efficiency 11.3 Summary of Propulsor Types 11.3.1 Marine Propeller 11.3.2 Controllable Pitch Propeller (CP Propeller) 11.3.3 Ducted Propellers 11.3.4 Contra-Rotating Propellers 11.3.5 Tandem Propellers 11.3.6 Z-Drive Units 11.3.7 Podded Azimuthing Propellers 11.3.8 Waterjet Propulsion 11.3.9 Cycloidal Propeller 11.3.10 Paddle Wheels 11.3.11 Sails 11.3.12 Oars 11.3.13 Lateral Thrust Units 11.3.14 Other Propulsors references (chapter 11) 12 Propeller Characteristics 12.1 Propeller Geometry, Coefficients, Characteristics 12.1.1 Propeller Geometry 12.1.2 Dimensional Analysis and Propeller Coefficients 12.1.3 Presentation of Propeller Data 12.1.4 Measurement of Propeller Characteristics 12.2 Cavitation 12.2.1 Background 12.2.2 Cavitation Criterion 12.2.3 Subcavitating Pressure Distributions 12.2.4 Propeller Section Types 12.2.5 Cavitation Limits 12.2.6 Effects of Cavitation on Thrust and Torque 12.2.7 Cavitation Tunnels 12.2.8 Avoidance of Cavitation 12.2.9 Preliminary Blade Area – Cavitation Check 12.2.10 Example: Estimate of Blade Area 12.3 Propeller Blade Strength Estimates 12.3.1 Background 12.3.2 Preliminary Estimates of Blade Root Thickness 12.3.3 Methods of Estimating Propeller Stresses 12.3.4 Propeller Strength Calculations Using Simple Beam Theory 12.4 Shape-Adaptive Foils references (chapter 12) 13 Powering Process 13.1 Selection of Marine Propulsion Machinery 13.1.1 Selection of Machinery: Main Factors to Consider 13.1.2 Propulsion Plants Available 13.1.3 Propulsion Layouts 13.2 Propeller–Engine Matching 13.2.1 Introduction 13.2.2 Controllable Pitch Propeller (CP Propeller) 13.2.3 The Multi-Engined Plant 13.3 Propeller Off-Design Performance 13.3.1 Background 13.3.2 Off-Design Cases: Examples 13.4 Voyage Analysis and In-Service Monitoring 13.4.1 Background 13.4.2 Data Required and Methods of Obtaining Data 13.4.3 Methods of Analysis 13.4.4 Limitations in Methods of Logging and Data Available 13.4.5 Developments in Voyage Analysis 13.4.6 Further Data Monitoring and Logging 13.5 Dynamic Positioning references (chapter 13) 14 Hull Form Design 14.1 General 14.1.1 Introduction 14.1.2 Background 14.1.3 Choice of Main Hull Parameters 14.1.4 Choice of Hull Shape 14.2 Fore End 14.2.1 Basic Requirements of Fore End Design 14.2.2 Bulbous Bows 14.2.3 Cavitation 14.3 Aft End 14.3.1 Basic Requirements of Aft End Design 14.3.2 Stern Hull Geometry to Suit Podded Units 14.3.3 Shallow Draught Vessels 14.4 Influence of Hull Form on Seakeeping 14.5 Computational Fluid Dynamics Methods Applied to Hull Form Design references (chapter 14) 15 Numerical Methods for Propeller Analysis 15.1 Introduction 15.2 Historical Development of Numerical Methods 15.3 Hierarchy of Methods 15.4 Guidance Notes on the Application of Techniques 15.4.1 Blade Element-Momentum Theory 15.4.2 Lifting Line Theories 15.4.3 Surface Panel Methods 15.4.4 Reynolds Averaged Navier–Stokes 15.5 Blade Element-Momentum Theory 15.5.1 Momentum Theory 15.5.2 Goldstein K Factors [15.8] 15.5.3 Blade Element Equations 15.5.4 Inflow Factors Derived from Section Efficiency 15.5.5 Typical Distributions of a, a′ and dKT/dx 15.5.6 Section Design Parameters 15.5.7 Lifting Surface Flow Curvature Effects 15.5.8 Calculations of Curvature Corrections 15.5.9 Algorithm for Blade Element-Momentum Theory 15.6 Propeller Wake Adaption 15.6.1 Background 15.6.2 Optimum Spanwise Loading 15.6.3 Optimum Diameters with Wake-Adapted Propellers 15.7 Effect of Tangential Wake 15.8 Examples Using Blade Element-Momentum Theory 15.8.1 Approximate Formulae 15.8.2 Example 1 15.8.3 Example 2 15.8.4 Example 3 15.9 Numerical Prediction of Cavitation 15.10 Assessment of Propeller Noise 15.11 Summary references (chapter 15) 16 Propulsor Design Data 16.1 Introduction 16.1.1 General 16.1.2 Number of Propeller Blades 16.2 Propulsor Data 16.2.1 Propellers 16.2.2 Controllable Pitch Propellers 16.2.3 Ducted Propellers 16.2.4 Podded Propellers 16.2.5 Cavitating Propellers 16.2.6 Supercavitating Propellers 16.2.7 Surface-Piercing Propellers 16.2.8 High-Speed Propellers, Inclined Shaft 16.2.9 Small Craft Propellers: Locked, Folding and Self-Pitching 16.2.10 Waterjets 16.2.11 Vertical Axis Propellers 16.2.12 Paddle Wheels 16.2.13 Lateral Thrust Units 16.2.14 Oars 16.2.15 Sails 16.3 Hull and Relative Rotative Efficiency Data 16.3.1 Wake Fraction wT and Thrust Deduction t 16.3.2 Relative Rotative Efficiency, ηR 16.4 Submarine and AUV Propulsor Design 16.4.1 Submarine Propeller 16.4.2 AUV Propeller references (chapter 16) 17 Reductions in Propulsive Power and Emissions 17.1 Introduction 17.2 Potential Savings in Hull Resistance 17.3 Potential Savings in Propeller Efficiency 17.3.1 Main Energy Losses 17.3.2 Detailed Design Modification to Propeller 17.3.3 Hull–Propeller–Rudder Interaction 17.4 Power Savings During Operation 17.4.1 Speed 17.4.2 Effects of Trim on Hull Resistance 17.4.3 Hull Surface Finish 17.4.4 Hull/Propeller Cleaning 17.4.5 Minimum Water Ballast 17.4.6 Weather Routeing 17.5 Energy Saving Devices (ESDs) 17.5.1 Working Principles 17.5.2 Upstream Fins 17.5.3 Upstream Ducts (Pre-Ducts) 17.5.4 Twisted Stern Upstream of Propeller 17.5.5 Downstream Fins 17.5.6 Twisted Rudder 17.5.7 Integrated Propeller–Rudder 17.5.8 Propeller Boss Cap Fins (PBCFs) 17.5.9 Summary 17.6 Auxiliary Propulsion Devices 17.6.1 Wind 17.6.2 Wave 17.6.3 Solar: Using Photovoltaic Cells 17.6.4 Gyroscopic Systems 17.6.5 Auxiliary Power–Propeller Interaction 17.6.6 Applications of Auxiliary Power 17.7 Alternative Fuels 17.8 Alternative Machinery/Propulsor Arrangements 17.9 Energy Efficiency Design Index (EEDI) 17.9.1 Introduction 17.9.2 EEDI Formula 17.9.3 Power P 17.9.4 Capacity C 17.9.5 Speed Vref 17.9.6 Correction Factors in Equation (17.10) 17.9.7 EEDI Reference Line 17.9.8 Ship Types Subject to EEDI Regulations 17.9.9 Implementation of EEDI 17.9.10 Reduction in EEDI (Methods of Reducing EEDI) 17.9.11 Minimum Propulsive Power 17.10 Summary references (chapter 17) 18 Applications 18.1 Background 18.2 Example Applications 18.2.1 Example Application 1. Tank Test Data: Estimate of Ship Effective Power 18.2.2 Example Application 2. Model Self-Propulsion Test Analysis 18.2.3 Example Application 3. Wake Analysis from Full-Scale Trials Data 18.2.4 Example Application 4. 140 m Cargo Ship: Estimate of Effective Power 18.2.5 Example Application 5. Tanker: Estimates of Effective Power in Load and Ballast Conditions 18.2.6 Example Application 6. 8000 TEU Container Ship: Estimates of Effective and Delivered Power 18.2.7 Example Application 7. 135 m Twin-Screw Ferry, 18 knots: Estimate of Effective Power PE 18.2.8 Example Application 8. 45.5 m Passenger Ferry, 37 knots, Twin-Screw Monohull: Estimates of Effective and Delivered Power 18.2.9 Example Application 9. 98 m Passenger/Car Ferry, 38 knots, Monohull: Estimates of Effective and Delivered Power 18.2.10 Example Application 10. 82 m Passenger/Car Catamaran Ferry, 36 knots: Estimates of Effective and Delivered Power 18.2.11 Example Application 11. 130 m Twin-Screw Warship, 28 knots, Monohull: Estimates of Effective and Delivered Power 18.2.12 Example Application 12. 35 m Patrol Boat, Monohull: Estimate of Effective Power 18.2.13 Example Application 13. 37 m Ocean-Going Tug: Estimate of Effective Power 18.2.14 Example Application 14. 14 m Harbour Work Boat, Monohull: Estimate of Effective Power 18.2.15 Example Application 15. 18 m Planing Craft, Single-Chine Hull: Estimates of Effective Power Preplaning and Planing 18.2.16 Example Application 16. 25 m Planing Craft, 35 knots, Single-Chine Hull: Estimate of Effective Power 18.2.17 Example Application 17. 10 m Yacht: Estimate of Performance 18.2.18 Example Application 18. Tanker: Propeller Off-Design Calculations 18.2.19 Example Application 19. Twin-Screw Ocean-Going Tug: Propeller Off-Design Calculations 18.2.20 Example Application 20. Ship Speed Trials: Correction for Natural Wind 18.2.21 Example Application 21. Detailed Cavitation Check on Propeller Blade Section 18.2.22 Example Application 22. Estimate of Propeller Blade Root Stresses 18.2.23 Example Application 23. Propeller Performance Estimates Using Blade Element-Momentum Theory 18.2.24 Example Application 24. Wake-Adapted Propeller 18.2.25 Example Application 25. Patrol Class Submarine: Estimates of Effective and Delivered Power 18.2.26 Example Application 26. AUV: Estimates of Effective and Delivered Power references (chapter 18) APPENDIX A1: Background Physics A1.1 Background A1.2 Basic Fluid Properties and Flow Fluid Properties Steady Flow Uniform Flow Streamline A1.3 Continuity of Flow A1.4 Forces Due to Fluids in Motion A1.5 Pressure and Velocity Changes in a Moving Fluid A1.6 Boundary Layer Origins Outer Flow Flow Within the Boundary Layer Displacement Thickness Laminar Flow A1.7 Flow Separation A1.8 Wave Properties Wave Speed Deep Water Shallow Water references (appendix a1) APPENDIX A2: Derivation of Eggers Formula for Wave Resistance APPENDIX A3: Tabulations of Resistance Design Data APPENDIX A4: Tabulations of Propulsor Design Data Index