دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 11
نویسندگان: Richard Budynas. Keith Nisbett
سری:
ISBN (شابک) : 9780073398211, 1260407640
ناشر: McGraw-Hill Education
سال نشر: 2019
تعداد صفحات: 1116
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Shigley's Mechanical Engineering Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی مهندسی مکانیک شیگلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی مهندسی مکانیک شیگلی برای دانشجویانی که شروع به مطالعه طراحی مهندسی مکانیک می کنند در نظر گرفته شده است. دانش آموزان متوجه خواهند شد که متن ذاتاً آنها را به آشنایی با اصول تصمیمات طراحی و استانداردهای اجزای صنعتی هدایت می کند. این ترکیبی از تمرکز مستقیم بر اصولی است که مدرسان انتظار آن را داشتند، با تأکید مدرن بر طراحی و برنامه های جدید. این نسخه رویکرد خوبی طراحی شده را حفظ کرده است که این کتاب را به مدت نزدیک به 50 سال به استاندارد در طراحی ماشین تبدیل کرده است. McGraw-Hill Education's Connect نیز به عنوان یک آیتم اختیاری در دسترس است. Connect تنها سیستم یادگیری یکپارچه ای است که دانش آموزان را با تطبیق مستمر برای ارائه دقیق آنچه نیاز دارند، زمانی که به آن نیاز دارند، چگونه به آن نیاز دارند، توانمند می کند تا زمان کلاس موثرتر باشد. اتصال به استاد این امکان را می دهد که تکالیف، آزمون ها و تست ها را به راحتی تعیین کند و به طور خودکار نمره های کار دانش آموز را ثبت کند. مشکلات برای جلوگیری از اشتراکگذاری پاسخها تصادفیسازی میشوند و ممکن است یک «راهحل چند مرحلهای» نیز داشته باشند که به پیشرفت یادگیری دانشآموزان در صورت بروز مشکل کمک میکند.
Shigley's Mechanical Engineering Design is intended for students beginning the study of mechanical engineering design. Students will find that the text inherently directs them into familiarity with both the basics of design decisions and the standards of industrial components. It combines the straightforward focus on fundamentals that instructors have come to expect, with a modern emphasis on design and new applications. This edition maintains the well-designed approach that has made this book the standard in machine design for nearly 50 years. McGraw-Hill Education's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
Cover Title Page Copyright Page Dedication About the Authors Brief Contents Contents Preface Acknowledgments Part 1 Basics Chapter 1 Introduction to Mechanical Engineering Design 1–1 Design 1–2 Mechanical Engineering Design 1–3 Phases and Interactions of the Design Process 1–4 Design Tools and Resources 1–5 The Design Engineer’s Professional Responsibilities 1–6 Standards and Codes 1–7 Economics 1–8 Safety and Product Liability 1–9 Stress and Strength 1–10 Uncertainty 1–11 Design Factor and Factor of Safety 1–12 Reliability and Probability of Failure 1–13 Relating Design Factor to Reliability 1–14 Dimensions and Tolerances 1–15 Units 1–16 Calculations and Significant Figures 1–17 Design Topic Interdependencies 1–18 Power Transmission Case Study Specifications Problems Chapter 2 Materials 2–1 Material Strength and Stiffness 2–2 The Statistical Significance of Material Properties 2–3 Plastic Deformation and Cold Work 2–4 Cyclic Stress-Strain Properties 2–5 Hardness 2–6 Impact Properties 2–7 Temperature Effects 2–8 Numbering Systems 2–9 Sand Casting 2–10 Shell Molding 2–11 Investment Casting 2–12 Powder-Metallurgy Process 2–13 Hot-Working Processes 2–14 Cold-Working Processes 2–15 The Heat Treatment of Steel 2–16 Alloy Steels 2–17 Corrosion-Resistant Steels 2–18 Casting Materials 2–19 Nonferrous Metals 2–20 Plastics 2–21 Composite Materials 2–22 Materials Selection Problems Chapter 3 Load and Stress Analysis 3–1 Equilibrium and Free-Body Diagrams 3–2 Shear Force and Bending Moments in Beams 3–3 Singularity Functions 3–4 Stress 3–5 Cartesian Stress Components 3–6 Mohr’s Circle for Plane Stress 3–7 General Three-Dimensional Stress 3–8 Elastic Strain 3–9 Uniformly Distributed Stresses 3–10 Normal Stresses for Beams in Bending 3–11 Shear Stresses for Beams in Bending 3–12 Torsion 3–13 Stress Concentration 3–14 Stresses in Pressurized Cylinders 3–15 Stresses in Rotating Rings 3–16 Press and Shrink Fits 3–17 Temperature Effects 3–18 Curved Beams in Bending 3–19 Contact Stresses 3–20 Summary Problems Chapter 4 Deflection and Stiffness 4–1 Spring Rates 4–2 Tension, Compression, and Torsion 4–3 Deflection Due to Bending 4–4 Beam Deflection Methods 4–5 Beam Deflections by Superposition 4–6 Beam Deflections by Singularity Functions 4–7 Strain Energy 4–8 Castigliano’s Theorem 4–9 Deflection of Curved Members 4–10 Statically Indeterminate Problems 4–11 Compression Members—General 4–12 Long Columns with Central Loading 4–13 Intermediate-Length Columns with Central Loading 4–14 Columns with Eccentric Loading 4–15 Struts or Short Compression Members 4–16 Elastic Stability 4–17 Shock and Impact Problems Part 2 Failure Prevention Chapter 5 Failures Resulting from Static Loading 5–1 Static Strength 5–2 Stress Concentration 5–3 Failure Theories 5–4 Maximum-Shear-Stress Theory for Ductile Materials 5–5 Distortion-Energy Theory for Ductile Materials 5–6 Coulomb-Mohr Theory for Ductile Materials 5–7 Failure of Ductile Materials Summary 5–8 Maximum-Normal-Stress Theory for Brittle Materials 5–9 Modifications of the Mohr Theory for Brittle Materials 5–10 Failure of Brittle Materials Summary 5–11 Selection of Failure Criteria 5–12 Introduction to Fracture Mechanics 5–13 Important Design Equations Problems Chapter 6 Fatigue Failure Resulting from Variable Loading 6–1 Introduction to Fatigue 6–2 Chapter Overview 6–3 Crack Nucleation and Propagation 6–4 Fatigue-Life Methods 6–5 The Linear-Elastic Fracture Mechanics Method 6–6 The Strain-Life Method 6–7 The Stress-Life Method and the S-N Diagram 6–8 The Idealized S-N Diagram for Steels 6–9 Endurance Limit Modifying Factors 6–10 Stress Concentration and Notch Sensitivity 6–11 Characterizing Fluctuating Stresses 6–12 The Fluctuating-Stress Diagram 6–13 Fatigue Failure Criteria 6–14 Constant-Life Curves 6–15 Fatigue Failure Criterion for Brittle Materials 6–16 Combinations of Loading Modes 6–17 Cumulative Fatigue Damage 6–18 Surface Fatigue Strength 6–19 Road Maps and Important Design Equations for the Stress-Life Method Problems Part 3 Design of Mechanical Elements Chapter 7 Shafts and Shaft Components 7–1 Introduction 7–2 Shaft Materials 7–3 Shaft Layout 7–4 Shaft Design for Stress 7–5 Deflection Considerations 7–6 Critical Speeds for Shafts 7–7 Miscellaneous Shaft Components 7–8 Limits and Fits Problems Chapter 8 Screws, Fasteners, and the Design of Nonpermanent Joints 8–1 Thread Standards and Definitions 8–2 The Mechanics of Power Screws 8–3 Threaded Fasteners 8–4 Joints—Fastener Stiffness 8–5 Joints—Member Stiffness 8–6 Bolt Strength 8–7 Tension Joints—The External Load 8–8 Relating Bolt Torque to Bolt Tension 8–9 Statically Loaded Tension Joint with Preload 8–10 Gasketed Joints 8–11 Fatigue Loading of Tension Joints 8–12 Bolted and Riveted Joints Loaded in Shear Problems Chapter 9 Welding, Bonding, and the Design of Permanent Joints 9–1 Welding Symbols 9–2 Butt and Fillet Welds 9–3 Stresses in Welded Joints in Torsion 9–4 Stresses in Welded Joints in Bending 9–5 The Strength of Welded Joints 9–6 Static Loading 9–7 Fatigue Loading 9–8 Resistance Welding 9–9 Adhesive Bonding Problems Chapter 10 Mechanical Springs 10–1 Stresses in Helical Springs 10–2 The Curvature Effect 10–3 Deflection of Helical Springs 10–4 Compression Springs 10–5 Stability 10–6 Spring Materials 10–7 Helical Compression Spring Design for Static Service 10–8 Critical Frequency of Helical Springs 10–9 Fatigue Loading of Helical Compression Springs 10–10 Helical Compression Spring Design for Fatigue Loading 10–11 Extension Springs 10–12 Helical Coil Torsion Springs 10–13 Belleville Springs 10–14 Miscellaneous Springs 10–15 Summary Problems Chapter 11 Rolling-Contact Bearings 11–1 Bearing Types 11–2 Bearing Life 11–3 Bearing Load Life at Rated Reliability 11–4 Reliability versus Life—The Weibull Distribution 11–5 Relating Load, Life, and Reliability 11–6 Combined Radial and Thrust Loading 11–7 Variable Loading 11–8 Selection of Ball and Cylindrical Roller Bearings 11–9 Selection of Tapered Roller Bearings 11–10 Design Assessment for Selected Rolling-Contact Bearings 11–11 Lubrication 11–12 Mounting and Enclosure Problems Chapter 12 Lubrication and Journal Bearings 12–1 Types of Lubrication 12–2 Viscosity 12–3 Petroff’s Equation 12–4 Stable Lubrication 12–5 Thick-Film Lubrication 12–6 Hydrodynamic Theory 12–7 Design Variables 12–8 The Relations of the Variables 12–9 Steady-State Conditions in Self-Contained Bearings 12–10 Clearance 12–11 Pressure-Fed Bearings 12–12 Loads and Materials 12–13 Bearing Types 12–14 Dynamically Loaded Journal Bearings 12–15 Boundary-Lubricated Bearings Problems Chapter 13 Gears—General 13–1 Types of Gears 13–2 Nomenclature 13–3 Conjugate Action 13–4 Involute Properties 13–5 Fundamentals 13–6 Contact Ratio 13–7 Interference 13–8 The Forming of Gear Teeth 13–9 Straight Bevel Gears 13–10 Parallel Helical Gears 13–11 Worm Gears 13–12 Tooth Systems 13–13 Gear Trains 13–14 Force Analysis—Spur Gearing 13–15 Force Analysis—Bevel Gearing 13–16 Force Analysis—Helical Gearing 13–17 Force Analysis—Worm Gearing Problems Chapter 14 Spur and Helical Gears 14–1 The Lewis Bending Equation 14–2 Surface Durability 14–3 AGMA Stress Equations 14–4 AGMA Strength Equations 14–5 Geometry Factors I and J (ZI and YJ) 14–6 The Elastic Coefficient Cp (ZE) 14–7 Dynamic Factor Kv 14–8 Overload Factor Ko 14–9 Surface Condition Factor Cf (ZR) 14–10 Size Factor Ks 14–11 Load-Distribution Factor Km (KH) 14–12 Hardness-Ratio Factor CH (ZW) 14–13 Stress-Cycle Factors YN and ZN 14–14 Reliability Factor KR (YZ) 14–15 Temperature Factor KT (Yθ) 14–16 Rim-Thickness Factor KB 14–17 Safety Factors SF and SH 14–18 Analysis 14–19 Design of a Gear Mesh Problems Chapter 15 Bevel and Worm Gears 15–1 Bevel Gearing—General 15–2 Bevel-Gear Stresses and Strengths 15–3 AGMA Equation Factors 15–4 Straight-Bevel Gear Analysis 15–5 Design of a Straight-Bevel Gear Mesh 15–6 Worm Gearing—AGMA Equation 15–7 Worm-Gear Analysis 15–8 Designing a Worm-Gear Mesh 15–9 Buckingham Wear Load Problems Chapter 16 Clutches, Brakes, Couplings, and Flywheels 16–1 Static Analysis of Clutches and Brakes 16–2 Internal Expanding Rim Clutches and Brakes 16–3 External Contracting Rim Clutches and Brakes 16–4 Band-Type Clutches and Brakes 16–5 Frictional-Contact Axial Clutches 16–6 Disk Brakes 16–7 Cone Clutches and Brakes 16–8 Energy Considerations 16–9 Temperature Rise 16–10 Friction Materials 16–11 Miscellaneous Clutches and Couplings 16–12 Flywheels Problems Chapter 17 Flexible Mechanical Elements 17–1 Belts 17–2 Flat- and Round-Belt Drives 17–3 V Belts 17–4 Timing Belts 17–5 Roller Chain 17–6 Wire Rope 17–7 Flexible Shafts Problems Chapter 18 Power Transmission Case Study 18–1 Design Sequence for Power Transmission 18–2 Power and Torque Requirements 18–3 Gear Specification 18–4 Shaft Layout 18–5 Force Analysis 18–6 Shaft Material Selection 18–7 Shaft Design for Stress 18–8 Shaft Design for Deflection 18–9 Bearing Selection 18–10 Key and Retaining Ring Selection 18–11 Final Analysis Problems Part 4 Special Topics Chapter 19 Finite-Element Analysis 19–1 The Finite-Element Method 19–2 Element Geometries 19–3 The Finite-Element Solution Process 19–4 Mesh Generation 19–5 Load Application 19–6 Boundary Conditions 19–7 Modeling Techniques 19–8 Thermal Stresses 19–9 Critical Buckling Load 19–10 Vibration Analysis 19–11 Summary Problems Chapter 20 Geometric Dimensioning and Tolerancing 20–1 Dimensioning and Tolerancing Systems 20–2 Definition of Geometric Dimensioning and Tolerancing 20–3 Datums 20–4 Controlling Geometric Tolerances 20–5 Geometric Characteristic Definitions 20–6 Material Condition Modifiers 20–7 Practical Implementation 20–8 GD&T in CAD Models 20–9 Glossary of GD&T Terms Problems Appendixes A Useful Tables B Answers to Selected Problems Index