دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jinsong Leng. Shanyi Du
سری:
ISBN (شابک) : 1420090194, 9781420090192
ناشر: CRC Press
سال نشر: 2010
تعداد صفحات: 374
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Shape-Memory Polymers and Multifunctional Composites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلیمرهای حافظه دار و کامپوزیت های چند منظوره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پلیمرهای حافظه دار (SMP) و کامپوزیت های چند منظوره که به دلیل رفتار حساس به محرک ها و قابلیت های تغییر شکل فوق العاده شان تحسین شده اند، از مهم ترین مواد هوشمند هستند. آنها همچنان به طور گسترده در بسیاری از زمینههای متنوع برای ایجاد چیزهایی مانند ساختارهای فضاپیمای قابل استقرار، ساختارهای شکلگیری، فومهای SMP، منسوجات هوشمند، و دستگاههای پزشکی هوشمند استفاده میشوند. نوشته شده توسط نویسندگان مشهور، پلیمرهای شکل-حافظه و کامپوزیت های چند منظوره یک نمای کلی از پیشرفت سیستماتیک مرتبط با این دسته از مواد در حال ظهور است. این کتاب مروری بر SMP ها و بحث مفصلی در مورد خواص ساختاری، حرارتی-مکانیکی و الکتریکی آنها و کاربردهای آنها در زمینه هایی از جمله هوانوردی، فضانوردی، زیست پزشکی و صنعت خودرو ارائه می دهد. با پوشش موضوعاتی از روش های سنتز تا کاربردهای نهایی، این یک متن آموزشی صحیح است که به عنوان راهنمای مواد هوشمند عمل می کند و کاوش عمیقی از SMPs و کامپوزیت های SMP چند منظوره ارائه می دهد و نقش مهم آنها را در زمینه مواد مشخص می کند. در هر فصل، کارشناسان صنعت جنبههای کلیدی مختلف مواد هوشمند جدید، از خواص و ساخت آنها گرفته تا روشهای تحریک مورد استفاده برای بازیابی شکل را مورد بحث قرار میدهند. این تجزیه و تحلیل جامع، عملکردهای مختلف SMPها، اصول اساسی پشت آنها و راههایی را که پلیمرها ممکن است طراحی محصول را به طور کلی تغییر شکل دهند، بررسی میکند.
Admired for their extraordinary stimuli-sensitive behavior and shape-changing capabilities, shape-memory polymers (SMPs) and multifunctional composites are among the most important smart materials. They continue to be widely applied in many diverse fields to create things such as self-deployable spacecraft structures, morphing structures, SMP foams, smart textiles, and intelligent medical devices. Written by renowned authors, Shape-Memory Polymers and Multifunctional Composites is a broad overview of the systematic progress associated with this emerging class of materials. The book presents an overview of SMPs and a detailed discussion of their structural, thermo-mechanical, and electrical properties, and their applications in fields including aeronautics, astronautics, biomedicine, and the automotive industry. Covering topics ranging from synthesis procedures to ultimate applications, this is a sound instructional text that serves as a guide to smart materials and offers an in-depth exploration of multifunctional SMPs and SMP composites, outlining their important role in the materials field. In each chapter, industry experts discuss different key aspects of novel smart materials, from their properties and fabrication to the actuation approaches used to trigger shape recovery. This comprehensive analysis explores the different functions of SMPs, the fundamentals behind them, and the ways in which polymers may reshape product design in general.
Shape-Memory Polymers and Multifunctional Composites......Page 2
Contents......Page 4
Preface......Page 6
Editors......Page 8
Contributors......Page 10
1.1 Introduction......Page 12
1.2 Definition of Actively Moving Polymers......Page 13
1.3 Shape- Memory Polymer Architectures......Page 14
1.3.1.1 Thermoplastic Shape- Memory Polymers......Page 15
1.3.1.2 Covalently Cross- Linked Shape- Memory Polymers......Page 17
1.3.2 Indirect Triggering of Thermally Induced Dual- Shape Effect......Page 19
1.4 Light- Induced Dual- Shape Effect......Page 22
1.5 Triple- Shape Polymers......Page 23
1.6 Outlook......Page 25
References......Page 26
CONTENTS......Page 32
2.1 Structural Requirements for SMP......Page 33
2.2 SMPs with a Covalently Cross- Linked Primary Structure......Page 35
2.2.1 SMP Networks Based on Polyolefines......Page 36
2.2.2 SMP Networks Based on Polyurethanes......Page 37
2.2.3 SMP Networks Based on Poly(( Meth) Acrylates)......Page 38
2.2.4 SMP Networks Based on Polystyrene......Page 43
2.3 Thermoplastic Shape- Memory Polymers......Page 44
2.3.1.1 Principle of Formation......Page 45
2.3.1.2 Raw Materials......Page 46
2.3.1.2.2 Long Chain Macrodiols......Page 48
2.3.1.2.3 Chain Extenders......Page 50
2.3.1.3 Synthesis Procedures......Page 51
2.3.1.4.1 Shape-Memory Properties......Page 54
2.3.1.4.2 Physical and Mechanical Property Changes at theTransition Temperature......Page 56
2.3.1.5.1 Polyurethanes with Amorphous Switching Segment ......Page 57
2.3.1.5.2 Polyurethanes with Crystalline Switching Segment......Page 59
2.3.1.5.3 Multiblock Polyurethanes......Page 63
2.3.2 Thermoplastic SMPs Based on Poly( Ethylene Oxide– Ethylene Terephthalate) Copolymers......Page 65
2.3.3 Thermoplastic SMPs Based on Aliphatic Polyesters......Page 66
2.3.4 Thermoplastic SMPs Based on Polystyrene......Page 67
2.3.6 Thermoplastic SMPs Based on Polymer Blends......Page 68
2.3.7 Summary......Page 69
2.4 Remarks and Outlook......Page 70
References......Page 71
3.1 Introduction......Page 76
3.1.2 Macroscopic Response of SMPs— Thermomechanical......Page 77
3.1.3 Macroscopic Response of SMPs— Environmental......Page 80
3.1.4 Description of Mechanisms for Modeling......Page 81
3.2.1 Backdrop for Modeling......Page 82
3.2.2 Models Based on Storage Deformation......Page 83
3.2.3 Models Based on Phase Transition......Page 85
3.2.4 Models Based on Viscoelasticity......Page 93
References......Page 98
4.1 Introduction to the Thermally Induced Shape- Memory Effect of Polymers......Page 102
4.2 Investigation of the Dual- Shape Effect of Shape- Memory Polymers with Cyclic, Thermomechanical Tensile Tests......Page 104
4.3 Investigation of the Triple- Shape Effect of Shape- Memory Polymers with Cyclic, Thermomechanical Tensile Tests......Page 109
4.4 Thermomechanical Model Approaches for Simulation of the Shape- Memory Behavior of Polymers......Page 112
4.5 Summary and Outlook......Page 115
References......Page 116
CONTENTS......Page 120
5.1 Introduction......Page 121
5.2.2 Testing......Page 122
5.3.1 Electrical Properties......Page 127
5.3.2 Uniaxial Tension at Room Temperature......Page 129
5.3.3 Shape Fixity......Page 130
5.3.4 Heating- Induced Recoverable Strain......Page 131
5.3.5 Heating- Induced Recovery Stress......Page 133
5.3.6 Water- Actuated Shape Recovery......Page 135
5.3.7 Damping Capability......Page 136
5.3.8 Young's Modulus......Page 138
5.4 Conclusions......Page 140
References......Page 141
CONTENTS......Page 144
6.1 Introduction......Page 145
6.2 Thermal- Induced Shape- Memory Effect......Page 146
6.3.1 Shape- Memory Polymer in Response to Light......Page 149
6.3.2 Infrared Light- Induced Shape- Memory Effect......Page 150
6.3.3 Infrared Light- Induced Shape- Memory Polymer Embedded with an Optical Fiber......Page 154
6.4.1 Shape- Memory Polymer Filled with Carbon Nanotubes......Page 158
6.4.2 Shape- Memory Polymer Filled with Carbon Particles......Page 160
6.4.2.2 Dynamic Mechanical Performances......Page 161
6.4.2.3 Micro/ Nanopatterns of SMP Composite......Page 163
6.4.2.4 Electroactive Properties for Shape- Memory Effect......Page 164
6.4.3.1 Electromagnetic- Induced SMP Composite......Page 167
6.4.3.2 Electroactive Thermoplastic SMP Composite Filled with Ni Powder Chains......Page 168
6.4.3.3 Electroactive Thermoplastic SMP/ CB Composite Filled with Ni Powder Chains......Page 176
6.4.3.4 Electroactive Thermoset SMP Composite Filled with Ni Powder Chains......Page 178
6.4.3.5 SMP Composite Actuated by External Magnetic Force......Page 180
6.4.4 Shape- Memory Polymer Filled with Hybrid Fibers......Page 182
6.5.1 Water- Driven Shape- Memory Effect......Page 185
6.5.1.1 Glass Transition Temperature after Immersion......Page 186
6.5.1.2 Correlation among Main Factors......Page 188
6.5.2 Solution- Driven Shape- Memory Effect by Chemical Interaction......Page 192
6.5.3 Solution- Driven Shape- Memory Effect by Physical Swelling Effect......Page 198
6.5.3.1 Theoretical Basis and Analysis......Page 199
6.5.3.2.1 Dynamic Mechanical Analysis......Page 202
6.5.3.2.2 FTIR Studies......Page 203
6.5.3.2.3 Correlations among Volume Swelling Ratio, Elastic Modulus, and Tg......Page 205
6.6 Summary and Outlook......Page 207
References......Page 208
7.1 Introduction......Page 214
7.2 Constitutive Relationship of Shape- Memory Polymers......Page 215
7.3.1.1 Static Tensile Property......Page 224
7.3.1.2 Shape Recovery Force Measurement......Page 226
7.3.2 Shape- Memory Polymer Filled with Carbon Nanofibers......Page 227
7.3.3 Shape- Memory Polymer Filled with SiC Nanoparticles......Page 229
7.3.3.1 Thermal Transition and Stress– Strain Behavior......Page 230
7.3.3.2 Recoverable Mechanical Property......Page 231
7.3.4 Shape- Memory Polymer Reinforced by Continuous Fibers......Page 232
7.3.4.1 Dynamic Mechanical Analysis......Page 233
7.3.4.2 Shape Recovery Performance......Page 234
7.3.4.3 Deformation Mechanism of Microstructure......Page 238
References......Page 240
CONTENTS......Page 244
8.2.1 Finite Element Method Modeling and Analysis......Page 245
8.2.2 Design and Deployment Demonstration......Page 247
8.2.3 Application in Solar Arrays......Page 250
8.3 Shape- Memory Polymer Composite Boom......Page 251
8.4 Shape- Memory Polymer Composite for Deployable Optical Systems......Page 253
8.5 Shape- Memory Polymer Composite for Ground- Based Deployable Mirrors......Page 254
8.6.1 Stiffeners for a Flexible Reflector......Page 255
8.6.2 Truss Structure......Page 256
8.6.4 Singly Curved Reflector......Page 257
8.7 Shape- Memory Polymer for Morphing Structures......Page 258
8.7.1 Folding Wing......Page 261
8.7.2 Variable Camber Wing......Page 264
8.7.3 Deployable Morphing Wing......Page 269
8.8 Reusable Shape- Memory Polymer Mandrel......Page 273
References......Page 275
9.1 Introduction......Page 278
9.2.1 Description......Page 280
9.2.2.2 Stress– Strain– Temperature Cycles......Page 282
9.2.2.3 Thermal Properties......Page 283
9.2.3 Characteristics of CHEM Foam Structure......Page 285
9.3.1 Investigated Space Applications......Page 286
9.3.1.1 Advanced Self- Deployable Wheels for Mobility Systems......Page 287
9.3.1.2 CHEM Horn Antenna......Page 288
9.3.1.3 Precision Soft Lander......Page 289
9.3.1.4 Radar Antenna......Page 290
9.3.1.5 Sensor Delivery System......Page 291
9.3.2 CHEM Improvements for Large Structures......Page 292
9.3.3 Potential Advanced CHEM Structures......Page 294
9.3.4 Comparison with Other Deployable Structures......Page 295
9.4 Potential Commercial Applications of CHEM Structures......Page 296
9.5 Medical Applications of CHEM Structures......Page 299
References......Page 300
CONTENTS......Page 304
10.1.1.2 Shape- Memory Polyurethanes ( SMPUs)......Page 305
10.1.1.3 Others......Page 306
10.1.2.2 Shape- Memory Behavior of SMPs with Thermosensitivity......Page 307
10.2 Overview of SMPs Used for Textiles......Page 308
10.3 Importance of Textile......Page 310
10.4.1.1 Mechanical Properties......Page 311
10.4.1.3 Shape- Memory Properties......Page 312
10.4.2 Shape- Memory Yarns and Fabrics......Page 314
10.4.3 Shape- Memory Finishing Textiles......Page 318
10.5.1 Shape- Memory Yarns......Page 319
10.5.2 Shape- Memory Fabrics......Page 320
10.5.3 Shape- Memory Garments......Page 321
10.5.4 Shape- Memory Finishing Fabric and Garments......Page 322
References......Page 323
11.1 Introduction......Page 326
11.2 Characteristics of Shape-Memory Polymers......Page 327
11.3 Biomedical Applications of Shape-Memory Polymers......Page 328
11.4 CHEM Foam Structures and Medical Applications......Page 337
References......Page 340
12.1 Introduction......Page 344
12.2 Concerns in Materials Selection and Design......Page 345
12.3.1 PU SMP and Composites......Page 348
12.3.2 PS SMP......Page 362
12.4 Future Directions in Developing NewSMPs and Applications......Page 369
12.5 Conclusions......Page 370
References......Page 371