دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: زمين شناسي ویرایش: نویسندگان: Mohammad Asef. Mohsen Farrokhrouz. سری: ISBN (شابک) : 9780415874199, 041587419X ناشر: CRC Press سال نشر: 2013 تعداد صفحات: 301 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 50 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب مهندسی شیل: مکانیک و مکانیزم: معدن و شاخه زمین شناسی، فیزیک سنگ ها، لایه ها، توده ها، مکانیک سنگ
در صورت تبدیل فایل کتاب Shale engineering : mechanics and mechanisms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی شیل: مکانیک و مکانیزم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Shale makes up about three-fourths of drilled formations. Even though the engineering properties of shale have been studied for several decades, shale engineering is still prone to unexpected instabilities and delays, representing a serious problem for the petroleum, mining and civil engineering industry. Distinct characteristics of shale make it exceptionally difficult to work with; three categories of potential stability problems in shale are mechanical problems, chemical reactivity and swelling, and thermal stimulation. When a number of these problems occur simultaneously, finding an optimized solution becomes even more challenging. Shale Engineering provides an integrative engineering approach to work towards practical solutions in handling shale. Accordingly, shale is defined and described from both an engineering and geological point of view. Elasticity and poroelasticity concepts, shale’s response to temperature changes, and finally chemical properties of shale and the impact thereof on the rock’s behavior are discussed in detail. In addressing the engineering aspects and parameters related to chemical, mechanical and thermal properties and integrating them into engineering models that can be applied in deep engineering projects, mining and other civil works, this book will serve as a reference to model designers and engineers working with shale in the petroleum industry and elsewhere. It is also suited for use in academic and professional courses in petroleum, mining, geological and civil engineering and drilling. Preface 1 Insight into shale 1.1 What is shale? 1.1.1 Shale: quick view 1.1.2 Shale: detailed definition 1.2 Shale minerals 1.3 Molecular structure of clay 1.4 Varieties of clay minerals 1.4.1 Smectite group 1.4.2 Vermiculite 1.4.3 Kaolin group 1.4.4 Illite 1.4.5 Interstratified clays 1.5 Cation exchange capacity 1.6 Cation exchange capacity (CEC) models 1.6.1 The general concept of shale formation models 1.6.2 Waxman and Smits shale model 1.7 Laboratory measurements of cation exchange capacity 1.7.1 Background 1.7.2 Materials and methods 1.7.3 pH control on CEC 1.8 Permeability in shale 1.8.1 Effect of pressure on permeability 1.9 Shale porosity importance 1.9.1 Effect of depth and pressure on porosity 1.9.2 Importance of micro-fabrics 1.9.3 Relationships between porosity and mechanical properties 1.9.4 Porosity as a geomechanical index 1.10 pH Effect on shear modulus 1.11 Shale importance in waste disposal 1.12 Significance of shale in the petroleum industry References 2 Shale classification 2.1 Geological classification of shale 2.2 Engineering classification of shale 2.2.1 Rock strength 2.2.2 Durability and slaking 2.2.3 Fissility in comparison with lamination 2.2.4 Swelling and shrinkage of clay soil and rock 2.2.5 Moisture content 2.2.6 Disintegration 2.2.7 Excess pore water pressure 2.2.8 Common tests performed on shale 2.2.9 Integrated shale features consideration 2.3 Understanding subsurface shale 2.3.1 Inter-layer water in shale 2.3.2 Shale compaction 2.4 Smectite/illite conversiob 2.4.1 Classification and general trends 2.4.2 Carbonate occurrence in shale 2.4.3 Kaolinite response to environmental changes 2.4.4 Shale composition and drilling suggestion 2.5 Stability diagrams of shale minerals 2.6 Kinetics of clay mineral 2.6.1 Montmorillonite 2.6.2 Illite 2.6.3 Kaolinite References 3 Swelling fundamentals 3.1 Drilling fluids 3.2 Shale and drilling muds 3.3 Common problems when drilling through shales 3.3.1 Mechanical view 3.3.2 Practical view 3.3.3 Prevention and procurement 3.4 Pressure and chemical performance in shale 3.5 Transport in shales 3.6 Clay-water interactions 3.7 Electrical surfaces of clay particles 3.8 Clay hydration 3.9 Involved forces in swelling 3.10 Swelling phenomenon; history and promise 3.11 The swelling pressure 3.12 Shale effects caused by water activity 3.12.1 Capillary effects 3.12.2 Concentration effects 3.12.3 Coupling: cation exchange process References 4 Water activity and osmosis concepts 4.1 Osmotic flow and membrane efficiency 4.1.1 Membrane efficiency test 4.2 Membrane efficiency studies 4.3 Swelling and membrane efficiency concepts 4.4 Mathematical model of water and solute transport in shale 4.4.1 Theory background 4.4.2 Basic equations 4.4.3 Membrane efficiency 4.4.4 Modified diffusion potential 4.4.5 Model formulation 4.4.6 Boundary conditions and initial condition 4.4.7 Numerical solution procedure 4.5 Results and discussions 4.6 The impact of temperature on the membrane efficiency of shale 4.6.1 Membrane efficiency test 4.6.2 Temperature impact on the test procedure 4.7 Motivation for further research References 5 Shale stabilizing additives and systems 5.1 Introduction 5.2 Shale reactivity test 5.2.1 Common tests for shale behavior measurement 5.2.2 Test description and results 5.3 Salts 5.3.1 Potassium chloride 5.3.2 Sodium chloride 5.3.3 Calcium/magnesium/zinc chloride/bromide (CaCl2, CaBr2, ZnCl2, MgCl2, MgBr2, ZnBr2) 5.3.4 Formate and acetate salts (MCOOH, MCH3COOH;M=Na+, K+, Cs+) 5.3.5 Polymers with special shale affinity (e.g. cationics, amines, PHPA) 5.3.6 Asphaltenes, gilsonites, graphites 5.4 Sugars and sugar derivatives 5.4.1 (Poly-)glycerols and (poly-)glycols 5.4.2 Mixed polyol-salt systems 5.5 Silicates 5.6 Classifying mud systems 5.6.1 Type I: non-inhibitive, dispersed/dispersive WBM 5.6.2 Type II: conventional inhibitive WBM 5.6.3 Type III: osmotic WBM 5.6.4 Type IV: low/non-invading WBM/OBM 5.6.5 Type V: low/non-invading osmotic WBM/OBM References 6 Thermal effects 6.1 Preliminary equations 6.1.1 Basic equations 6.1.2 Field equations 6.2 Mathematical modeling 6.3 Modeling results 6.3.1 Thermally-induced pore pressure 6.3.2 Collapse failure index (FI) 6.3.3 Critical mud-weight predictions 6.3.4 Remarks and limitations References 7 Application of Biot theory in well bore failure models 7.1 Poroelasticity: theory and application 7.2 Definition of typical wellbore models 7.3 Rock failure and failure potential fundamentals 7.4 Pure poroelastic effects 7.4.1 Constitutive equations 7.4.2 Field equations 7.4.3 Failure potentials 7.5 Poro-thermo-elastic model 7.5.1 Constitutive equations 7.5.2 Transport equations 7.5.3 Conservation equations 7.5.4 Field equations 7.5.5 Failure potentials 7.6 Chemo-poro-elastic model 7.6.1 Constitutive equations 7.6.2 Transport equations 7.6.3 Conservation equations 7.6.4 Field equations 7.6.5 Failure potentials 7.7 Chemo-poro-thermo-elastic model 7.7.1 Rock constitutive equations 7.7.2 Transport equations 7.7.3 Field equations 7.7.4 Failure potentials 7.8 Useful operational recommendations 7.8.1 Uncoupled thermo-poro-elasticity 7.8.2 Uncoupled chemo-poro-elasticity 7.8.3 Coupled chemo-poro-thermo-elasticity References 8 Chemo-mechanical modeling 8.1 Introduction 8.2 Osmosis and poroelasticity 8.3 First instability origin: pore pressure propagation 8.3.1 Near wellbore stress distribution 8.3.2 Compressive failure criterion 8.3.3 Theory and model construction 8.3.4 Estimating model input parameters 8.4 Results and discussion 8.4.1 Input data 8.4.2 Pore pressure profile 8.4.3 Types of wellbore failure 8.4.4 What happens after failure 8.4.5 The effect of mud weight 8.4.6 The effect of shale properties 8.4.7 The effect of solute diffusivity 8.4.8 The effect of drilling fluid solute concentration 8.4.9 The effect of sigmaH and sigmah 8.5 Second instability origin: solute diffusion 8.6 Ion transfer 8.6.1 Constitutive equations 8.6.2 Transport process 8.6.3 Field equations 8.7 Wellbore stress analysis 8.7.1 Solution methodology 8.8 Example application References 9 Plane strain solution in time domain 9.1 Temperature and solute mass fraction impacts on pore pressure 9.2 Chemical and thermal induced stresses 9.2.1 Radial stress 9.2.2 Tangential stress 9.2.3 Axial stress 9.3 Strain induced under symmetric loading 9.3.1 Radial strain 9.3.2 Tangential strain References Appendices I-VIII Subject index