دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Richard Zach
سری:
ISBN (شابک) : 9798536395509
ناشر:
سال نشر: 2022
تعداد صفحات: 431
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Sets, Logic, Computation: An Open Introduction to Metalogic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مجموعه ها، منطق، محاسبات: مقدمه ای باز بر متالوژیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب درسی معناشناسی، نظریه اثبات و فرانظریه منطق مرتبه اول. این نظریه مجموعه سادهلوح، منطق مرتبه اول، حساب متوالی و استنتاج طبیعی، کامل بودن، فشردگی، و قضایای لوونهایم-اسکولم، ماشینهای تورینگ، و غیرقابل تصمیمگیری مسئله توقف و منطق مرتبه اول را پوشش میدهد. این بر اساس پروژه Open Logic است و برای دانلود رایگان در slc.openlogicproject.org در دسترس است.
A textbook on the semantics, proof theory, and metatheory of first-order logic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. It is based on the Open Logic project, and available for free download at slc.openlogicproject.org.
Contents Preface I. Sets, Relations, Functions 1. Sets 1.1 Extensionality 1.2 Subsets and Power Sets 1.3 Some Important Sets 1.4 Unions and Intersections 1.5 Pairs, Tuples, Cartesian Products 1.6 Russell's Paradox Summary Problems 2. Relations 2.1 Relations as Sets 2.2 Special Properties of Relations 2.3 Equivalence Relations 2.4 Orders 2.5 Graphs 2.6 Operations on Relations Summary Problems 3. Functions 3.1 Basics 3.2 Kinds of Functions 3.3 Functions as Relations 3.4 Inverses of Functions 3.5 Composition of Functions 3.6 Partial Functions Summary Problems 4. The Size of Sets 4.1 Introduction 4.2 Enumerations and Countable Sets 4.3 Cantor's Zig-Zag Method 4.4 Pairing Functions and Codes 4.5 An Alternative Pairing Function 4.6 Uncountable Sets 4.7 Reduction 4.8 Equinumerosity 4.9 Sets of Different Sizes, and Cantor's Theorem 4.10 The Notion of Size, and Schröder–Bernstein Summary Problems II. First-order Logic 5. Introduction to First-Order Logic 5.1 First-Order Logic 5.2 Syntax 5.3 Formulas 5.4 Satisfaction 5.5 Sentences 5.6 Semantic Notions 5.7 Substitution 5.8 Models and Theories 5.9 Soundness and Completeness 6. Syntax of First-Order Logic 6.1 Introduction 6.2 First-Order Languages 6.3 Terms and Formulas 6.4 Unique Readability 6.5 Main operator of a Formula 6.6 Subformulas 6.7 Formation Sequences 6.8 Free Variables and Sentences 6.9 Substitution Summary Problems 7. Semantics of First-Order Logic 7.1 Introduction 7.2 Structures for First-order Languages 7.3 Covered Structures for First-order Languages 7.4 Satisfaction of a Formula in a Structure 7.5 Variable Assignments 7.6 Extensionality 7.7 Semantic Notions Summary Problems 8. Theories and Their Models 8.1 Introduction 8.2 Expressing Properties of Structures 8.3 Examples of First-Order Theories 8.4 Expressing Relations in a Structure 8.5 The Theory of Sets 8.6 Expressing the Size of Structures Summary Problems 9. Derivation Systems 9.1 Introduction 9.2 The Sequent Calculus 9.3 Natural Deduction 9.4 Tableaux 9.5 Axiomatic Derivations 10. The Sequent Calculus 10.1 Rules and Derivations 10.2 Propositional Rules 10.3 Quantifier Rules 10.4 Structural Rules 10.5 Derivations 10.6 Examples of Derivations 10.7 Derivations with Quantifiers 10.8 Proof-Theoretic Notions 10.9 Derivability and Consistency 10.10 Derivability and the Propositional Connectives 10.11 Derivability and the Quantifiers 10.12 Soundness 10.13 Derivations with Identity predicate 10.14 Soundness with Identity predicate Summary Problems 11. Natural Deduction 11.1 Rules and Derivations 11.2 Propositional Rules 11.3 Quantifier Rules 11.4 Derivations 11.5 Examples of Derivations 11.6 Derivations with Quantifiers 11.7 Proof-Theoretic Notions 11.8 Derivability and Consistency 11.9 Derivability and the Propositional Connectives 11.10 Derivability and the Quantifiers 11.11 Soundness 11.12 Derivations with Identity predicate 11.13 Soundness with Identity predicate Summary Problems 12. The Completeness Theorem 12.1 Introduction 12.2 Outline of the Proof 12.3 Complete Consistent Sets of Sentences 12.4 Henkin Expansion 12.5 Lindenbaum's Lemma 12.6 Construction of a Model 12.7 Identity 12.8 The Completeness Theorem 12.9 The Compactness Theorem 12.10 A Direct Proof of the Compactness Theorem 12.11 The Löwenheim–Skolem Theorem Summary Problems 13. Beyond First-order Logic 13.1 Overview 13.2 Many-Sorted Logic 13.3 Second-Order logic 13.4 Higher-Order logic 13.5 Intuitionistic Logic 13.6 Modal Logics 13.7 Other Logics III. Turing Machines 14. Turing Machine Computations 14.1 Introduction 14.2 Representing Turing Machines 14.3 Turing Machines 14.4 Configurations and Computations 14.5 Unary Representation of Numbers 14.6 Halting States 14.7 Disciplined Machines 14.8 Combining Turing Machines 14.9 Variants of Turing Machines 14.10 The Church-Turing Thesis Summary Problems 15. Undecidability 15.1 Introduction 15.2 Enumerating Turing Machines 15.3 Universal Turing Machines 15.4 The Halting Problem 15.5 The Decision Problem 15.6 Representing Turing Machines 15.7 Verifying the Representation 15.8 The Decision Problem is Unsolvable 15.9 Trakthenbrot's Theorem Summary Problems A. Proofs A.1 Introduction A.2 Starting a Proof A.3 Using Definitions A.4 Inference Patterns A.5 An Example A.6 Another Example A.7 Proof by Contradiction A.8 Reading Proofs A.9 I Can't Do It! A.10 Other Resources Problems B. Induction B.1 Introduction B.2 Induction on N B.3 Strong Induction B.4 Inductive Definitions B.5 Structural Induction B.6 Relations and Functions Problems C. Biographies C.1 Georg Cantor C.2 Alonzo Church C.3 Gerhard Gentzen C.4 Kurt Gödel C.5 Emmy Noether C.6 Bertrand Russell C.7 Alfred Tarski C.8 Alan Turing C.9 Ernst Zermelo D. The Greek Alphabet Glossary Photo Credits Bibliography About the Open Logic Project