دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Debu Panda, Phil Bates, Bhanu Pittampally, Sumeet Joshi سری: ISBN (شابک) : 9781804619285 ناشر: Packt Publishing سال نشر: 2023 تعداد صفحات: 421 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین بدون سرور با آمازون Redshift ML: ایجاد، آموزش و استقرار مدلهای یادگیری ماشینی با استفاده از دستورات SQL آشنا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به شما کمک میکند معماریهای بدون سرور سرتاسر را برای جذب، تجزیه و تحلیل و یادگیری ماشین با استفاده از Redshift Serverless و Redshift ML پیادهسازی کنید.
This book helps you implement end-to-end serverless architectures for ingestion, analytics, and machine learning using Redshift Serverless and Redshift ML.
Cover Title page Copyright Dedication Foreword Contributors Table of Contents Preface Part 1:Redshift Overview: Getting Started with Redshift Serverless and an Introduction to Machine Learning Chapter 1: Introduction to Amazon Redshift Serverless What is Amazon Redshift? Getting started with Amazon Redshift Serverless What is a namespace? What is a workgroup? Connecting to your data warehouse Using Amazon Redshift query editor v2 Loading sample data Running your first query Summary Chapter 2: Data Loading and Analytics on Redshift Serverless Technical requirements Data loading using Amazon Redshift Query Editor v2 Creating tables Loading data from Amazon S3 Loading data from a local drive Data loading from Amazon S3 using the COPY command Loading data from a Parquet file Automating file ingestion with a COPY job Best practices for the COPY command Data loading using the Redshift Data API Creating table Loading data using the Redshift Data API Summary Chapter 3: Applying Machine Learning in Your Data Warehouse Understanding the basics of ML Comparing supervised and unsupervised learning Classification Regression Traditional steps to implement ML Data preparation Evaluating an ML model Overcoming the challenges of implementing ML today Exploring the benefits of ML Summary Part 2:Getting Started with Redshift ML Chapter 4: Leveraging Amazon Redshift ML Why Amazon Redshift ML? An introduction to Amazon Redshift ML A CREATE MODEL overview AUTO everything AUTO with user guidance XGBoost (AUTO OFF) K-means (AUTO OFF) BYOM Summary Chapter 5: Building Your First Machine Learning Model Technical requirements Redshift ML simple CREATE MODEL Uploading and analyzing the data Diving deep into the Redshift ML CREATE MODEL syntax Creating your first machine learning model Evaluating model performance Checking the Redshift ML objectives Running predictions Comparing ground truth to predictions Feature importance Model performance Summary Chapter 6: Building Classification Models Technical requirements An introduction to classification algorithms Diving into the Redshift CREATE MODEL syntax Training a binary classification model using the XGBoost algorithm Establishing the business problem Uploading and analyzing the data Using XGBoost to train a binary classification model Running predictions Prediction probabilities Training a multi-class classification model using the Linear Learner model type Using Linear Learner to predict the customer segment Evaluating the model quality Running prediction queries Exploring other CREATE MODEL options Summary Chapter 7: Building Regression Models Technical requirements Introducing regression algorithms Redshift’s CREATE MODEL with user guidance Creating a simple linear regression model using XGBoost Uploading and analyzing the data Splitting data into training and validation sets Creating a simple linear regression model Running predictions Creating multi-input regression models Linear Learner algorithm Understanding model evaluation Prediction query Summary Chapter 8: Building Unsupervised Models with K-Means Clustering Technical requirements Grouping data through cluster analysis Determining the optimal number of clusters Creating a K-means ML model Creating a model syntax overview for K-means clustering Uploading and analyzing the data Creating the K-means model Evaluating the results of the K-means clustering Summary Part 3:Deploying Models with Redshift ML Chapter 9: Deep Learning with Redshift ML Technical requirements Introduction to deep learning Business problem Uploading and analyzing the data Prediction goal Splitting data into training and test datasets Creating a multiclass classification model using MLP Running predictions Summary Chapter 10: Creating a Custom ML Model with XGBoost Technical requirements Introducing XGBoost Introducing an XGBoost use case Defining the business problem Uploading, analyzing, and preparing data for training Splitting data into train and test datasets Preprocessing the input variables Creating a model using XGBoost with Auto Off Creating a binary classification model using XGBoost Generating predictions and evaluating model performance Summary Chapter 11: Bringing Your Own Models for Database Inference Technical requirements Benefits of BYOM Supported model types Creating the BYOM local inference model Creating a local inference model Running local inference on Redshift BYOM using a SageMaker endpoint for remote inference Creating BYOM remote inference Generating the BYOM remote inference command Summary Chapter 12: Time-Series Forecasting in Your Data Warehouse Technical requirements Forecasting and time-series data Types of forecasting methods What is time-series forecasting? Time trending data Seasonality Structural breaks What is Amazon Forecast? Configuration and security Creating forecasting models using Redshift ML Business problem Uploading and analyzing the data Creating a table with output results Summary Chapter 13: Operationalizing and Optimizing Amazon Redshift ML Models Technical requirements Operationalizing your ML models Model retraining process without versioning The model retraining process with versioning Automating the CREATE MODEL statement for versioning Optimizing the Redshift models’ accuracy Model quality Model explainability Probabilities Using SageMaker Autopilot notebooks Summary Index About Packt Other Books You May Enjoy