دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Ranjan Roy
سری:
ISBN (شابک) : 1108709451, 9781108709453
ناشر: Cambridge University Press
سال نشر: 2021
تعداد صفحات: 780
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Series and Products in the Development of Mathematics. Volume 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سری ها و محصولات در توسعه ریاضیات. جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد اول از یک اثر دو جلدی است که با ارائه و توضیح مفاهیم به هم پیوسته و نتایج صدها ریاضیدان ناشناس و نامدار، پیشرفت سری ها و محصولات را از سال 1380 تا 2000 دنبال می کند. برخی از فصل ها عمدتاً به کار یک ریاضیدان در مورد یک موضوع محوری می پردازند، و فصل های دیگر پیشرفت در طول زمان یک موضوع معین را شرح می دهند. این ویرایش دوم بهروزرسانی شده منابع در توسعه ریاضیات، زمینه، جزئیات و مطالب منبع اولیه گستردهای را اضافه میکند، با بسیاری از بخشها که بازنویسی شدهاند تا اهمیت تحولات و استدلالهای کلیدی را آشکارتر نشان دهند. جلد 1 که حتی برای دانشجویان پیشرفته در مقطع کارشناسی قابل دسترسی است، توسعه روشهای سری و محصولاتی را که از روشهای تحلیلی پیچیده یا ماشین آلات پیچیده استفاده نمیکنند، بحث میکند. جلد 2 به کارهای اخیرتر، از جمله راهحل حدسهای بیبرباخ توسط دبرانگز میپردازد و به دانش ریاضی پیشرفتهتری نیاز دارد.
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
Contents Contents of Volume 2 Preface 1 Power Series in Fifteenth-Century Kerala 1.1 Preliminary Remarks 1.2 Transformation of Series 1.3 Jyesthadeva on Sums of Powers 1.4 Arctangent Series in the Yuktibhasa 1.5 Derivation of the Sine Series in the Yuktibhasa 1.6 Continued Fractions 1.7 Exercises 1.8 Notes on the Literature 2 Sums of Powers of Integers 2.1 Preliminary Remarks 2.2 Johann Faulhaber 2.3 Fermat 2.4 Pascal 2.5 Seki and Jakob Bernoulli on Bernoulli Numbers 2.6 Jakob Bernoulli’s Polynomials 2.7 Euler 2.8 Lacroix’s Proof of Bernoulli’s Formula 2.9 Jacobi on Faulhaber 2.10 Jacobi and Raabe on Bernoulli Polynomials 2.11 Ramanujan’s Recurrence Relations for Bernoulli Numbers 2.12 Notes on the Literature 3 Infinite Product of Wallis 3.1 Preliminary Remarks 3.2 Wallis’s Infinite Product for π 3.3 Brouncker and Infinite Continued Fractions 3.4 Méray and Stieltjes: The Probability Integral 3.5 Euler: Series and Continued Fractions 3.6 Euler: Riccati’s Equation and Continued Fractions 3.7 Exercises 3.8 Notes on the Literature 4 The Binomial Theorem 4.1 Preliminary Remarks 4.2 Landen’s Derivation of the Binomial Theorem 4.3 Euler: Binomial Theorem for Rational Exponents 4.4 Cauchy: Proof of the Binomial Theorem for Real Exponents 4.5 Abel’s Theorem on Continuity 4.6 Harkness and Morley’s Proof of the Binomial Theorem 4.7 Exercises 4.8 Notes on the Literature 5 The Rectification of Curves 5.1 Preliminary Remarks 5.2 Descartes’s Method of Finding the Normal 5.3 Hudde’s Rule for a Double Root 5.4 Van Heuraet’s Letter on Rectification 5.5 Newton’s Rectification of a Curve 5.6 Leibniz’s Derivation of the Arc Length 5.7 Exercises 5.8 Notes on the Literature 6 Inequalities 6.1 Preliminary Remarks 6.2 Harriot’s Proof of the Arithmetic and Geometric Means Inequality 6.3 Maclaurin’s Inequalities 6.4 Comments on Newton’s and Maclaurin’s Inequalities 6.6 Hölder 6.7 Jensen’s Inequality 6.8 Riesz’s Proof of Minkowski’s Inequality 6.9 Exercises 6.10 Notes on the Literature 7 The Calculus of Newton and Leibniz 7.1 Preliminary Remarks 7.2 Newton’s 1671 Calculus Text 7.3 Leibniz: Differential Calculus 7.4 Leibniz on the Catenary 7.5 Johann Bernoulli on the Catenary 7.6 Johann Bernoulli: The Brachistochrone 7.7 Newton’s Solution to the Brachistochrone 7.8 Newton on the Radius of Curvature 7.9 Johann Bernoulli on the Radius of Curvature 7.10 Exercises 7.11 Notes on the Literature 8 De Analysi per Aequationes Infinitas 8.1 Preliminary Remarks 8.2 Algebra of Infinite Series 8.3 Newton’s Polygon 8.4 Newton on Differential Equations 8.5 Newton’s EarliestWork on Series 8.6 de Moivre on Newton’s Formula for sin nθ 8.7 Stirling’s Proof of Newton’s Formula 8.8 Zolotarev: Lagrange Inversion with Remainder 8.9 Exercises 8.10 Notes on the Literature 9 Finite Differences: Interpolation and Quadrature 9.1 Preliminary Remarks 9.2 Newton: Divided Difference Interpolation 9.3 Gregory–Newton Interpolation Formula 9.4 Waring, Lagrange: Interpolation Formula 9.5 Euler on Interpolation 9.6 Cauchy, Jacobi: Waring–Lagrange Interpolation Formula 9.7 Newton on Approximate Quadrature 9.8 Hermite: Approximate Integration 9.9 Chebyshev on Numerical Integration 9.10 Exercises 9.11 Notes on the Literature 10 Series Transformation by Finite Differences 10.1 Preliminary Remarks 10.2 Newton’s Transformation 10.3 Montmort’s Transformation 10.4 Euler’s Transformation Formula 10.5 Stirling’s Transformation Formulas 10.6 Nicole’s Examples of Sums 10.7 Stirling Numbers 10.8 Lagrange’s Proof of Wilson’s Theorem 10.9 Taylor’s Summation by Parts 10.10 Exercises 10.11 Notes on the Literature 11 The Taylor Series 11.1 Preliminary Remarks 11.2 Gregory’s Discovery of the Taylor Series 11.3 Newton: An Iterated Integral as a Single Integral 11.4 Bernoulli and Leibniz: A Form of the Taylor Series 11.5 Taylor and Euler on the Taylor Series 11.6 Lacroix on D’Alembert’s Derivation of the Remainder 11.7 Lagrange’s Derivation of the Remainder Term 11.8 Laplace’s Derivation of the Remainder Term 11.9 Cauchy on Taylor’s Formula and l’Hˆopital’s rule 11.10 Cauchy: The Intermediate Value Theorem 11.11 Exercises 11.12 Notes on the Literature 12 Integration of Rational Functions 12.1 Preliminary Remarks 12.2 Newton’s 1666 Basic Integrals 12.3 Newton’s Factorization of xn ± 1 12.4 Cotes and de Moivre’s Factorizations 12.5 Euler: Integration of Rational Functions 12.6 Euler’s “Investigatio Valoris Integralis” 12.7 Hermite’s Rational Part Algorithm 12.8 Johann Bernoulli: Integration of √ax^2+bx+c 12.9 Exercises 12.10 Notes on the Literature 13 Difference Equations 13.1 Preliminary Remarks 13.2 de Moivre on Recurrent Series 13.3 Simpson andWaring on Partitioning Series 13.4 Stirling’s Method of Ultimate Relations 13.5 Daniel Bernoulli on Difference Equations 13.6 Lagrange: Nonhomogeneous Equations 13.7 Laplace: Nonhomogeneous Equations 13.8 Exercises 13.9 Notes on the Literature 14 Differential Equations 14.1 Preliminary Remarks 14.2 Leibniz: Equations and Series 14.3 Newton on Separation of Variables 14.4 Johann Bernoulli’s Solution of a First-Order Equation 14.5 Euler on General Linear Equations with Constant Coefficients 14.6 Euler: Nonhomogeneous Equations 14.7 Lagrange’s Use of the Adjoint 14.8 Jakob Bernoulli and Riccati’s Equation 14.9 Riccati’s Equation 14.10 Singular Solutions 14.11 Mukhopadhyay on Monge’s Equation 14.12 Exercises 14.13 Notes on the Literature 15 Series and Products for Elementary Functions 15.1 Preliminary Remarks 15.2 Euler: Series for Elementary Functions 15.3 Euler: Products for Trigonometric Functions 15.4 Euler’s Finite Product for sin nx 15.5 Cauchy’s Derivation of the Product Formulas 15.6 Euler and Niklaus I Bernoulli: Partial Fraction Expansions 15.7 Euler: Logarithm 15.8 Euler: Dilogarithm 15.9 Spence: Two-Variable Dilogarithm Formula 15.10 Schellbach: Products to Series 15.11 Exercises 15.12 Notes on the Literature 16 Zeta Values 16.1 Preliminary Remarks 16.2 Euler’s First Evaluation of Σ 1/n^2k 16.3 Euler: Bernoulli Numbers and Σ (1/n)^2k 16.4 Euler’s Evaluation of Some L-Series Values by Partial Fractions 16.5 Euler’s Evaluation of Σ 1/n^2 by Integration 16.6 N. Bernoulli’s Evaluation of Σ1/(2n+1)^2 16.7 Euler and Goldbach: Double Zeta Values 16.8 Secant and Tangent Numbers and ζ(2m) 16.9 Landen and Spence: Evaluation of ζ(2k) 16.10 Exercises 17 The Gamma Function 17.1 Preliminary Remarks 17.2 Stirling: Γ(1/2) by Newton–Bessel Interpolation 17.3 Euler’s Integral for the Gamma Function 17.4 Euler’s Evaluation of the Beta Integral 17.5 Newman and the Product for Γ(x) 17.6 Gauss’s Theory of the Gamma Function 17.7 Euler: Series to Product 17.8 Euler: Products to Continued Fractions 17.9 Sylvester: A Difference Equation and Euler’s Continued Fraction 17.10 Poisson, Jacobi, and Dirichlet: Beta Integrals 17.11 The Volume of an n-Dimensional Ball 17.12 The Selberg Integral 17.13 Good’s Proof of Dyson’s Conjecture 17.14 Bohr, Mollerup, and Artin on the Gamma Function 17.15 Kummer’s Fourier Series for ln Γ(x) 17.16 Exercises 17.17 Notes on the Literature 18 The Asymptotic Series for ln Γ(x) 18.1 Preliminary Remarks 18.2 De Moivre’s Asymptotic Series 18.3 Stirling’s Asymptotic Series 18.4 Binet’s Integrals for ln Γ(x) 18.5 Cauchy’s Proof of the Asymptotic Character of de Moivre’s Series 18.6 Exercises 18.7 Notes on the Literature 19 Fourier Series 19.1 Preliminary Remarks 19.2 Euler: Trigonometric Expansion of a Function 19.3 Lagrange on the Longitudinal Motion of the Loaded Elastic String 19.4 Euler on Fourier Series 19.5 Fourier and Linear Equations in Infinitely Many Unknowns 19.6 Dirichlet’s Proof of Fourier’s Theorem 19.7 Dirichlet: On the Evaluation of Gauss Sums 19.8 Schaar: Reciprocity of Gauss Sums 19.9 Exercises 19.10 Notes on the Literature 20 The Euler–Maclaurin Summation Formula 20.1 Preliminary Remarks 20.2 Euler on the Euler–Maclaurin Formula 20.3 Maclaurin’s Derivation of the Euler–Maclaurin Formula 20.4 Poisson’s Remainder Term 20.5 Jacobi’s Remainder Term 20.6 Bernoulli Polynomials 20.7 Number Theoretic Properties of Bernoulli Numbers 20.8 Exercises 20.9 Notes on the Literature 21 Operator Calculus and Algebraic Analysis 21.1 Preliminary Remarks 21.2 Euler’s Solution of a Difference Equation 21.3 Lagrange’s Extension of the Euler–Maclaurin Formula 21.4 Franc¸ais’s Method of Solving Differential Equations 21.5 Herschel: Calculus of Finite Differences 21.6 Murphy’s Theory of Analytical Operations 21.7 Duncan Gregory’s Operational Calculus 21.8 Boole’s Operational Calculus 21.9 Jacobi and the Symbolic Method 21.10 Cartier: Gregory’s Proof of Leibniz’s Rule 21.11 Hamilton’s Algebra of Complex Numbers and Quaternions 21.12 Exercises 21.13 Notes on the Literature 22 Trigonometric Series after 1830 22.1 Preliminary Remarks 22.2 The Riemann Integral 22.3 Smith: Revision of Riemann and Discovery of the Cantor Set 22.4 Riemann’s Theorems on Trigonometric Series 22.5 The Riemann–Lebesgue Lemma 22.6 Schwarz’s Lemma on Generalized Derivatives 22.7 Cantor’s Uniqueness Theorem 22.8 Exercises 22.9 Notes on the Literature 23 The Hypergeometric Series 23.1 Preliminary Remarks 23.2 Euler’s Derivation of the Hypergeometric Equation 23.3 Pfaff’s Derivation of the 3F2 Identity 23.4 Gauss’s Contiguous Relations and Summation Formula 23.5 Gauss’s Proof of the Convergence of F(a,b,c,x) for c − a −b > 0 23.6 Raabe’s Test for Convergence 23.7 Gauss’s Continued Fraction 23.8 Gauss: Transformations of Hypergeometric Functions 23.9 Kummer’s 1836 Paper on Hypergeometric Series 23.10 Jacobi’s Solution by Definite Integrals 23.11 Riemann’s Theory of Hypergeometric Functions 23.12 Exercises 23.13 Notes on the Literature 24 Orthogonal Polynomials 24.1 Preliminary Remarks 24.2 Legendre’s Proof of the Orthogonality of His Polynomials 24.3 Gauss on Numerical Integration 24.4 Jacobi’s Commentary on Gauss 24.5 Murphy and Ivory: The Rodrigues Formula 24.6 Liouville’s Proof of the Rodrigues Formula 24.7 The Jacobi Polynomials 24.8 Stieltjes: Zeros of Jacobi Polynomials 24.9 Askey: Discriminant of Jacobi Polynomials 24.10 Chebyshev: Discrete Orthogonal Polynomials 24.11 Chebyshev and Orthogonal Matrices 24.12 Chebyshev’s Discrete Legendre and Jacobi Polynomials 24.13 Exercises 24.14 Notes on the Literature Bibliography A B C D E F G H I JK L M NO P R S T VW YZ Index AB C DE FG HI JKLM NO PQR ST UVWYZ