دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Graham Brooker
سری:
ISBN (شابک) : 1839531991, 9781839531996
ناشر: Scitech Publishing
سال نشر: 2022
تعداد صفحات: 880
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 87 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sensors for Ranging and Imaging (Electromagnetic Waves) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسگرهای محدوده و تصویربرداری (امواج الکترومغناطیسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Sensors for Ranging and Imaging یک کتاب درسی جامع و مرجع حرفه ای است که پیشینه ای محکم در فناوری سنجش فعال ارائه می دهد. این نسخه جدید به طور جامع به روز شده و گسترش یافته است تا آخرین فن آوری های رادار را شامل شود.
با شروع بخش مقدماتی در مورد تولید سیگنال، فیلتر کردن و مدولاسیون، این کتاب با فصل هایی در مورد رادیومتری (مادون قرمز و مایکروویو) به عنوان یک مقاله در ادامه می آید. پس زمینه فرآیند سنجش فعال هسته اصلی کتاب مربوط به سنجش فعال است که با سنسورهای برد فعال و تصویربرداری فعال (اصول عملیاتی، اجزاء) شروع می شود و از طریق استخراج معادلات برد رادار (و لیدار) و تشخیص سیگنال های اکو، هر دو اساسی، می پردازد. برای درک تصویربرداری رادار، سونار و لیدار. فصلهای بعدی انتشار سیگنال انرژی الکترومغناطیسی و صوتی و ویژگیهای هدف و درهمکاری را پوشش میدهد. بقیه کتاب شامل اصول اولیه فرآیند اندازه گیری برد، تصویربرداری فعال با تاکید بر نویز و تکنیک های مدولاسیون فرکانس خطی، پردازش داپلر و ردیابی هدف می شود.
این راهنمای سیستماتیک و کامل برای محدوده و تصویربرداری است. سنسورها برای دانشجویان فارغ التحصیل در حال مطالعه سیستم های حسگر و متخصصان صنعت که مایل به گسترش یا به روز رسانی دانش خود هستند بسیار ارزشمند است. این توضیحات واضح و دقیق را در کنار مثال های کارآمد ارائه می دهد تا درک عمیقی از مطالب در اختیار خوانندگان قرار دهد.
Sensors for Ranging and Imaging is a comprehensive textbook and professional reference that provides a solid background in active sensing technology. This new edition has been comprehensively updated and expanded to include the latest radar technologies.
Beginning with an introductory section on signal generation, filtering and modulation, the book follows with chapters on radiometry (infrared and microwave) as a background to the active sensing process. The core of the book is concerned with active sensing, starting with active ranging and active imaging sensors (operational principles, components), and goes through the derivation of the radar (and lidar) range equations, and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Further chapters cover signal propagation of both electromagnetic and acoustic energy, and target and clutter characteristics. The remainder of the book involves the basics of the range measurement process, active imaging with an emphasis on noise and linear frequency modulation techniques, Doppler processing, and target tracking.
This systematic and thorough guide to ranging and imaging sensors is invaluable for graduate students studying sensing systems and industry professionals wishing to expand or update their knowledge. It offers clear, detailed explanations alongside worked examples to provide readers with an in-depth understanding of the material.
Title Copyright Contents About the author Acknowledgements Chapter 1 Introduction to sensing 1.1 Introduction 1.1.1 Active sensors 1.1.2 Passive sensors 1.2 A brief history of sensing 1.2.1 Sonar 1.2.2 Radar 1.2.3 Lidar 1.3 Passive infrared sensing 1.4 Sensor systems 1.5 Frequency band allocations for the electromagnetic spectrum 1.6 Frequency band allocations for the acoustic spectrum References Chapter 2 Signal processing and modulation 2.1 The nature of electronic signals 2.2 Noise 2.2.1 Thermal noise 2.2.2 Shot noise 2.2.3 1/f Noise 2.2.4 Avalanche noise 2.3 Generating analogue signals 2.3.1 Generating digital signals 2.4 Signals and noise in the frequency domain 2.4.1 The Fourier series 2.5 Analogue signal processing 2.5.1 Amplifiers 2.5.2 Practical considerations 2.6 Analogue filters 2.6.1 Low-pass filter 2.6.2 High-pass filters 2.6.3 Bandpass filters 2.6.4 Notch and band-reject filters 2.6.5 Active filter implementation 2.6.6 Other analogue circuits 2.7 Digital signal processing 2.7.1 Signal aliasing 2.7.2 Digital filters 2.8 Analogue modulation and demodulation 2.8.1 Amplitude modulation 2.9 Frequency modulation 2.10 Linear frequency modulation 2.11 Pulse-coded modulation techniques 2.11.1 Pulse amplitude modulation 2.11.2 Binary frequency shift keying 2.11.3 Phase-shift keying 2.11.4 Split phase codes 2.11.5 Stepped frequency modulation 2.12 Convolution 2.12.1 Linear time-invariant systems 2.12.2 The convolution sum 2.12.3 Worked example: pulsed radar echo amplitude References Chapter 3 IR radiometers and image intensifiers 3.1 Introduction 3.2 Thermal emission 3.2.1 Blackbody radiation 3.2.2 The Planck function 3.2.3 Properties of the Planck function 3.2.4 Confirmation of Stefan__amp__#8211;Boltzmann and Rayleigh__amp__#8211;Jean laws 3.3 Emissivity and reflectivity 3.3.1 Worked example: blackbody radiation from human body 3.4 Detecting thermal radiation 3.4.1 External photoeffect 3.4.2 Internal photoeffect 3.4.3 Heating 3.5 Performance criteria for detectors 3.5.1 Responsivity 3.5.2 Noise-equivalent power 3.5.3 Detectivity and specific detectivity 3.6 Noise processes and effects 3.7 Applications 3.7.1 Passive ultraviolet sensor (external photoeffect) 3.7.2 Radiation thermometer (internal photoeffect: thermopile) 3.7.3 Passive infrared sensor (internal photoeffect: pyroelectric) 3.7.4 Crookes radiometer 3.8 Introduction to thermal imaging systems 3.8.1 Scattering and absorption 3.8.2 Scanning mechanisms and arrays 3.8.3 Micro-bolometer arrays 3.8.4 Key optical parameters 3.9 Performance measures for infrared imagers 3.9.1 Detector field of view 3.9.2 Spatial frequency 3.9.3 Signal-to-noise ratio for a point target 3.9.4 Worked example: IRST system snr 3.9.5 Signal-to-noise ratio for a target in ground clutter 3.9.6 Noise-equivalent temperature difference 3.9.7 Example 3.9.8 The minimum resolvable temperature difference 3.10 Target detection and recognition 3.10.1 Example of FLIR detection 3.11 Thermal imaging applications 3.12 Image intensifiers 3.12.1 First-generation tubes 3.12.2 Second-generation tubes 3.12.3 Third-generation tubes 3.12.4 Spectral characteristics of the scene 3.12.5 Time gating microchannel plates References Chapter 4 Millimetre-wave radiometers 4.1 Antenna power temperature correspondence 4.1.1 Example of power received from a blackbody 4.2 Brightness temperature 4.3 Apparent temperature 4.4 Atmospheric effects 4.4.1 Attenuation 4.4.2 Downwelling radiation 4.4.3 Upwelling radiation 4.5 Terrain brightness 4.6 Worked example: space-based radiometer 4.6.1 Temperature contrast 4.7 Antenna considerations 4.7.1 Beamwidth 4.7.2 Efficiency 4.7.3 Fill ratio 4.8 Receiver considerations 4.8.1 Mixer implementations for microwave receivers 4.8.2 Noise figure 4.9 The system noise temperature 4.10 Radiometer temperature sensitivity 4.11 Radiometer implementation 4.11.1 Total power radiometer 4.11.2 Dicke radiometer 4.11.3 Performance comparison between radiometer types 4.12 Intermediate frequency and video gain requirements 4.12.1 Direct detection radiometers 4.13 Worked example: anti-tank sub-munition sensor design 4.13.1 Radiometer implementation 4.13.2 Receiver noise temperature 4.13.3 Minimum detectable temperature difference 4.14 Radiometric imaging 4.14.1 Image processing 4.15 Applications 4.15.1 Airborne scanned millimetre-wave radiometer 4.15.2 Scanning multi-channel microwave radiometer 4.15.3 Ground-based millimetre-wave radiometers 4.15.4 Radio astronomy References Chapter 5 Active ranging sensors 5.1 Overview 5.2 Triangulation 5.3 Pulsed time-of-flight operation 5.3.1 Sensor requirements 5.3.2 Speed of propagation 5.3.3 The antenna 5.3.4 The transmitter 5.3.5 The receiver 5.4 Using pulsed time of flight 5.4.1 Timing discriminators 5.4.2 Pulse integration 5.4.3 Time transformation 5.5 Other methods of measuring range 5.5.1 Ranging using an unmodulated carrier 5.5.2 Ranging using a modulated carrier 5.5.3 Tellurometer example 5.6 The radar range equation 5.6.1 Derivation 5.6.2 The dB form 5.6.3 Worked example: radar detection calculation 5.6.4 Receiver noise 5.6.5 Determining the required signal level 5.6.6 Pulse integration and the probability of detection 5.7 The acoustic range equation 5.7.1 Example of using the acoustic range equation 5.8 TOF measurement considerations 5.9 Range measurement radar for a cruise missile References Chapter 6 Active imaging sensors 6.1 Imaging techniques 6.2 Range-gate limited 2D image construction 6.3 Beamwidth-limited 3D image construction 6.3.1 Push-broom scanning 6.3.2 Mechanical scanning 6.4 The lidar range equation 6.5 Lidar system performance 6.5.1 Direct detection 6.5.2 Heterodyne detection 6.5.3 Signal-to-noise ratio and detection probability 6.5.4 Worked example: lidar reflection from the moon 6.6 Digital terrain models 6.6.1 Surface models 6.6.2 Digital landscapes 6.6.3 Thematic visualisation 6.7 Airborne lidar hydrography 6.7.1 Laser airborne depth sounder 6.7.2 Photoacoustic airborne sonar system 6.8 3D imaging 6.8.1 Scanned radar systems 6.8.2 MIMO systems 6.8.3 Focused beam radar imaging 6.8.4 Line-scan lidar imaging 6.8.5 Lidar for autonomous vehicles 6.8.6 Unconventional scanning mechanisms 6.8.7 Jigsaw __amp__#8211; foliage-penetrating lidar 6.9 Acoustic imaging 6.9.1 Scanning acoustic microscopes 6.10 Worked example: lidar locust tracker 6.10.1 Requirement 6.10.2 Specifications 6.10.3 System hardware 6.10.4 Determining the required aircraft speed 6.10.5 Laser power density on the ground 6.10.6 The power density of the reflected signals back at the laser 6.10.7 The effect of the sun 6.10.8 The receiver 6.10.9 Conclusions References Chapter 7 Signal propagation 7.1 The sensing environment 7.2 Attenuation of electromagnetic waves 7.2.1 Clear weather attenuation 7.2.2 Effect of atmospheric pressure (air density) 7.2.3 Effect of rain 7.2.4 Effect of fog and clouds 7.2.5 Overall attenuation 7.2.6 Attenuation through dust and smoke 7.2.7 Effect of atmosphere composition 7.2.8 Electromagnetic propagation through solid materials 7.3 Refraction of electromagnetic waves 7.4 Acoustics and vibration 7.4.1 Characteristic impedance (Z) and sound pressure 7.4.2 Sound intensity (I) 7.4.3 Sound propagation in gases 7.4.4 Sound propagation in water 7.4.5 Sound propagation in solids 7.4.6 Attenuation of sound in air 7.5 Attenuation of sound in water 7.6 Reflection and refraction of sound 7.6.1 Waves normal to the interface 7.6.2 Waves at an angle to the interface 7.6.3 Propagation paths 7.7 Multipath effects 7.7.1 Mechanism 7.7.2 Multipath lobing 7.7.3 Multipath fading 7.7.4 Multipath tracking 7.7.5 Multipath experiment with ultrasound 7.7.6 Multipath effects on imaging References Chapter 8 Target and clutter characteristics 8.1 Introduction 8.2 Definition of target cross-section 8.2.1 Cross-section and the equivalent sphere 8.2.2 Cross-section of real targets 8.3 Radar cross-sections of man made objects 8.3.1 Simple shapes 8.3.2 Radar cross-section of complex targets 8.4 Effect of target material on RCS 8.5 RCS of living creatures 8.5.1 Human beings 8.5.2 Birds 8.5.3 Insects 8.6 Fluctuations in radar cross-section 8.6.1 Temporal fluctuations 8.6.2 Spatial distribution of cross-section 8.7 Radar stealth 8.7.1 Minimising detectability 8.7.2 Anti-stealth technology 8.8 Target cross-section in the infrared 8.9 Acoustic target cross-section 8.9.1 Target composition 8.9.2 Target properties 8.9.3 Particulate targets 8.9.4 Underwater targets 8.10 Clutter cross-section 8.10.1 Ground clutter 8.10.2 Sea clutter 8.11 Surface clutter backscatter 8.12 Calculating volume backscatter 8.12.1 Rain 8.12.2 Dust and mist 8.12.3 Chaff 8.13 Underwater Clutter 8.13.1 Backscatter 8.13.2 Volume reverberation 8.14 Worked example: orepass radar development 8.14.1 Requirement 8.14.2 Selection of a sensor 8.14.3 Range resolution 8.14.4 Target characteristics 8.14.5 Clutter characteristics 8.14.6 Target signal-to-clutter ratio (SCR) 8.14.7 Antenna size and radar frequency 8.14.8 Radar configuration 8.14.9 Component selection 8.14.10 Signal-to-noise ratio 8.14.11 Measurement update rate 8.14.12 Monitoring rock falling down the pass 8.14.13 Prototype build and test References Chapter 9 Detection of signals in noise 9.1 Introduction 9.2 Radar noise 9.2.1 Noise probability density functions 9.3 Infrared detection and lidar noise 9.3.1 Thermal noise 9.3.2 Shot noise 9.3.3 Avalanche noise 9.3.4 1/f noise 9.3.5 Total noise contribution 9.4 Sonar noise 9.4.1 Thermal noise 9.4.2 Noise from the sea 9.5 Effects of signal-to-noise ratio 9.5.1 Probability of false alarm 9.5.2 Probability of detection 9.5.3 Detector loss relative to an ideal system 9.6 The matched filter 9.7 Coherent detection 9.8 Integration of pulse trains 9.9 Detection of fluctuating signals 9.10 Detecting targets in clutter 9.11 Constant false alarm rate (CFAR) processors 9.12 Target detection analysis 9.12.1 Worked example: target detection with an air surveillance radar 9.12.2 Range analysis software packages 9.12.3 Detection range in rain 9.13 Noise jamming 9.13.1 Noise jamming example References Chapter 10 Doppler measurement 10.1 The Doppler shift 10.1.1 Doppler shift derivation 10.2 Doppler geometry 10.2.1 Targets moving at low velocities (v__amp__#8810;c) 10.2.2 Targets moving at high speed (v __amp__lt; c) 10.3 Doppler shift extraction 10.3.1 Direction discrimination 10.4 Pulsed Doppler 10.5 Doppler sensors 10.5.1 Continuous wave Doppler ultrasound 10.5.2 Continuous wave Doppler radar 10.5.3 Pulsed Doppler ultrasound 10.5.4 Pulsed Doppler radar 10.6 Doppler target generators 10.6.1 Spinning reflectors 10.6.2 Electronic targets 10.6.3 Piezoelectric target 10.7 Case study: estimating the speed of radio-controlled aircraft 10.7.1 Background 10.7.2 Measured data References Chapter 11 High-range-resolution techniques 11.1 Classical modulation techniques 11.2 Amplitude modulation 11.2.1 Range resolution 11.3 Frequency and phase modulation 11.3.1 Matched filter 11.4 Phase-coded pulse compression 11.4.1 Barker codes 11.4.2 Random codes 11.4.3 Correlation 11.5 SAW-based pulse compression 11.6 Step frequency 11.7 Frequency-modulated continuous-wave radar 11.7.1 Operational principles 11.7.2 Matched filtering 11.7.3 The ambiguity function 11.7.4 Effect of a non-linear chirp 11.7.5 Chirp linearisation 11.7.6 Extraction of range information and range gating 11.7.7 Problems with FMCW 11.8 Stretch 11.9 Interrupted FMCW 11.9.1 Disadvantages 11.9.2 Optimising for a long-range imaging application 11.9.3 Implementation 11.10 Side lobes and weighting for linear FM systems 11.11 Transmitter leakage and phase noise in FMCW radars 11.12 High-resolution radar systems 11.12.1 Industry 11.12.2 Automotive radar 11.12.3 Research radars 11.13 Worked example: Brimstone antitank missile 11.13.1 System specifications 11.13.2 Seeker specifications (known) 11.13.3 Operational procedure __amp__#8211; Lock-on after launch 11.13.4 System performance (speculated) 11.13.5 Dual-look target confirmation 11.13.6 Transition to track 11.13.7 Tracking and guidance 11.13.8 Dual-mode Brimstone References Chapter 12 High angular-resolution techniques 12.1 Introduction 12.2 Phased arrays 12.2.1 Advantages of using phased arrays 12.2.2 Using metamaterials to improve antenna performance 12.2.3 Array synthesis 12.2.4 Two-point array 12.2.5 Four-point array 12.2.6 The general case 12.3 The radiation pattern 12.3.1 Linear array 12.3.2 Radiation pattern: 2D rectangular array 12.4 Beam steering 12.4.1 Active and passive arrays 12.4.2 Corrections to improve range resolution 12.5 Array characteristics 12.5.1 Antenna gain and beamwidth 12.5.2 Matching and mutual coupling 12.5.3 Thinned arrays 12.5.4 Conformal arrays 12.6 Applications 12.6.1 Acoustic array 12.6.2 MMIC phased arrays 12.6.3 Early warning phased array radar 12.7 Side-scan sonar 12.7.1 Operational principles 12.7.2 Hardware 12.7.3 Operation and image interpretation 12.7.4 Signal processing 12.8 Worked example: performance of the ICT-5202 transducer 12.9 Doppler beam-sharpening 12.9.1 Overview 12.9.2 DBS analysis 12.9.3 Image formation 12.9.4 Worked example: DBS sonar 12.10 Operational principles of synthetic aperture 12.11 Range and cross-range resolution 12.11.1 Unfocused SAR 12.11.2 Focused SAR 12.11.3 Resolution comparison 12.12 Worked example: synthetic-aperture sonar 12.13 Radar-image-quality issues 12.13.1 Perspective of a radar image 12.13.2 Image distortion 12.13.3 Speckle 12.14 SAR on unmanned aerial vehicles 12.14.1 Tactical Endurance Synthetic-Aperture Radar 12.14.2 MiniSAR 12.14.3 Other UAV-based SAR systems 12.15 Airborne SAR capability 12.16 Space-based SAR 12.16.1 Interferometric SAR 12.17 Magellan Mission to Venus References Chapter 13 Range and angle estimation and tracking 13.1 Introduction 13.2 Range estimation and tracking 13.2.1 Range gating 13.3 Principles of a split-gate tracker 13.3.1 Range transfer function 13.3.2 Noise on split-gate trackers 13.4 Range tracking loop implementation 13.4.1 The __amp__#945;__amp__#8211;__amp__#946; filter 13.4.2 The __amp__#945;__amp__#8211;__amp__#946;__amp__#8211;__amp__#947; filter 13.4.3 The Kalman filter 13.4.4 Other fixed gain tracking filters 13.5 Ultrasonic range tracker example 13.6 Tracking noise after filtering 13.7 Tracking lag for an accelerating target 13.8 Worked example: range tracker bandwidth optimisation 13.9 Range tracking systems 13.9.1 Lidar speed trap 13.10 Seduction jamming 13.11 Angle measurement 13.11.1 Amplitude thresholding 13.11.2 Proximity detector example 13.12 Angle tracking principles 13.12.1 Scanning across the target 13.12.2 Null steering 13.13 Lobe switching (sequential lobing) 13.13.1 Main disadvantages of lobe switching 13.14 Conical scan 13.14.1 The squint angle optimisation process 13.14.2 Measuring the conscan antenna transfer function 13.14.3 Application 13.14.4 Main disadvantages 13.14.5 Other considerations 13.15 Infrared target trackers 13.16 Amplitude comparison monopulse 13.16.1 Antenna patterns 13.16.2 Generation of error signals for a microwave radar 13.16.3 Ultrasound sonar beacon tracker example 13.16.4 Classical monopulse radar 13.16.5 Monopulse tracking using phased array 13.17 Comparison between conscan and monopulse 13.18 Angle tracking loops 13.18.1 Motor control 13.18.2 Tracking error 13.19 Angle estimation and tracking applications 13.19.1 Instrument landing system 13.20 Worked example: combined acoustic and infrared tracker 13.20.1 Operational principles of prototype 13.20.2 Theoretical performance 13.20.3 Tracker implementation 13.20.4 Construction 13.20.5 Control algorithms 13.21 Angle track jamming 13.22 Triangulation and trilateration 13.22.1 Loran-C References Chapter 14 Tracking moving targets 14.1 Track while scan 14.2 The coherent pulsed tracking radar 14.2.1 Single-channel detection 14.2.2 I/Q detection 14.2.3 Moving target indicator 14.3 Limitations to MTI performance 14.4 Range-gated pulsed Doppler tracking 14.5 Coordinate frames 14.5.1 Measurement frame 14.5.2 Tracking and estimation frame 14.6 Antenna mounts and servo systems 14.7 On-axis tracking 14.7.1 Crossing targets and apparent acceleration 14.8 Millimetre-wave tracking radar 14.9 Tracking in Cartesian space 14.10 Combining radar and optronic tracking 14.11 Worked example: fire control radar 14.11.1 Requirements 14.11.2 Selection of polarisation 14.11.3 Positioner specifications 14.11.4 Radar horizon 14.11.5 Selection of frequency 14.11.6 Adverse weather effects 14.11.7 Required single-pulse signal-to-noise ratio 14.11.8 Tracking gate size 14.11.9 Signal-to-clutter 14.11.10 Moving target indicator 14.11.11 The pulse repetition frequency 14.11.12 Search requirement 14.11.13 Integration gain 14.11.14 Matched filter 14.11.15 Transmitter power 14.11.16 System configuration 14.11.17 Free-space detection range 14.11.18 Effects of multipath on aircraft detection 14.11.19 Detection threshold and CFAR 14.11.20 Transition to track 14.11.21 Target tracking References Chapter 15 RFID tags and transponders 15.1 Principle of operation 15.2 History 15.3 Secondary surveillance radar 15.3.1 Interrogation equipment 15.3.2 Transponder equipment 15.3.3 Operation 15.3.4 SSR issues 15.4 Automatic Dependent Surveillance__amp__#8211;Broadcast 15.4.1 Data format 15.5 AIS transponders 15.6 Radio-frequency identification (RFID) systems 15.6.1 Electronic article surveillance 15.6.2 Multibit EAS tags 15.6.3 Magnetic coupled RFID transponder systems 15.6.4 Electromagnetic coupled RFID transponder systems 15.7 Other applications 15.7.1 House arrest tag 15.7.2 Animal tracking 15.7.3 Near-field communications and proximity cards 15.8 Social issues of RFID 15.9 Technical challenges 15.10 Harmonic radar 15.11 Passive reflected power modulation 15.12 Battlefield combat ID system 15.12.1 Combat identification: the future 15.13 Indoor localisation References Chapter 16 Tomography and 3D imaging 16.1 Principle of operation 16.2 CT imaging 16.2.1 Image reconstruction 16.2.2 What is displayed in CT images 16.2.3 Two-dimensional displays 16.2.4 Three-dimensional displays 16.3 Magnetic resonance imaging 16.3.1 Nuclear magnetic resonance 16.3.2 Imaging process 16.3.3 Imaging resolution 16.4 Magnetic resonance images 16.4.1 Contrast enhancement 16.4.2 DICOM files 16.5 Functional MRI investigations of brain function 16.6 Positron emission tomography 16.6.1 Examples of the use of PET scans 16.7 3D ultrasound imaging 16.7.1 2D medical ultrasound 16.8 3D extension 16.8.1 Ultrasonic computed tomography 16.9 Pocket ultrasound 16.10 Other ultrasound imaging modalities 16.10.1 Tissue harmonic imaging 16.10.2 Colour flow mapping 16.10.3 Shear wave elastography 16.11 Sonar imaging in 3D 16.12 Ground-penetrating radar 16.12.1 3D imaging using GPR 16.13 Worked example: detecting a ruby nodule in a rock matrix References Index