ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Semimodular lattices: Theory and applications

دانلود کتاب شبکه های نيمه مدولار: تئوری و برنامه های کاربردی

Semimodular lattices: Theory and applications

مشخصات کتاب

Semimodular lattices: Theory and applications

دسته بندی: جبر
ویرایش:  
نویسندگان:   
سری: Encyclopedia of Mathematics and its Applications 
ISBN (شابک) : 9780521461054, 0521461057 
ناشر: CUP 
سال نشر: 1999 
تعداد صفحات: 385 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Semimodular lattices: Theory and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شبکه های نيمه مدولار: تئوری و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شبکه های نيمه مدولار: تئوری و برنامه های کاربردی

نظریه شبکه به عنوان بخشی از جبر در قرن نوزدهم از طریق کار بول، پیرس و شرودر، و در نیمه اول قرن بیستم از طریق کار ددکیند، بیرخوف، اوره، فون نویمان، مک لین، ویلکاکس، دیلوورث، تکامل یافت. و دیگران. در شبکه‌های نیمه مدولار، مانفرد استرن از تعمیم‌های متوالی شبکه‌های توزیعی و مدولار برای تشریح توسعه شبکه‌های نیمه مدولار از جبرهای بولی استفاده می‌کند. او بر نظریه مهم نیمه مدولاریت، انشعاب های متعدد آن و کاربردهای آن در ریاضیات گسسته، ترکیبیات و جبر تمرکز می کند. نویسنده مفهوم نیمه مدولاریت بیرخوف و مفاهیم مختلف مرتبط در نظریه شبکه را بررسی و تحلیل می‌کند و نتایج نظری و همچنین کاربردهایی را در نظریه گروه‌های ریاضیات گسسته و جبر جهانی ارائه می‌کند. تاکید ویژه بر جنبه های ترکیبی شبکه های نیمه مدولار محدود و اتصالات بین ماتروئیدها و شبکه های هندسی، آنتی ماتروئیدها و شبکه های توزیعی محلی داده شده است. این کتاب همچنین به شبکه‌هایی می‌پردازد که \"نزدیک\" به semimodularity هستند یا می‌توانند با semimodularity ترکیب شوند، برای مثال شبکه‌های فوق‌حل‌پذیر، قابل قبول، سازگار، قوی و متعادل. محققان در نظریه شبکه، ریاضیات گسسته، ترکیبات و جبر این کتاب را ارزشمند خواهند یافت.


توضیحاتی درمورد کتاب به خارجی

Lattice theory evolved as part of algebra in the nineteenth century through the work of Boole, Peirce and Schröder, and in the first half of the twentieth century through the work of Dedekind, Birkhoff, Ore, von Neumann, Mac Lane, Wilcox, Dilworth, and others. In Semimodular Lattices, Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The author surveys and analyzes Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and he presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. Special emphasis is given to the combinatorial aspects of finite semimodular lattices and to the connections between matroids and geometric lattices, antimatroids and locally distributive lattices. The book also deals with lattices that are "close" to semimodularity or can be combined with semimodularity, for example supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book valuable.



فهرست مطالب

Cover......Page 1
About......Page 2
Encyclopedia of Mathematics and its Applications Volume 73......Page 3
Semimodular Lattices: Theory and Applications......Page 4
9780521461054......Page 5
Contents......Page 8
Preface......Page 10
1.1 Sources of Semimodularity\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 16
1.2 Boolean Lattices, Ortholattices, and Orthomodular Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 23
1.3 Distributive and Semidistributive Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 30
1.4 Pseudocomplemented Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 39
1.5 Complementation\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 44
1.6 Modular Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 47
1.7 Upper and Lower Semimodularity\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 52
1.8 Existence of Decompositions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 68
1.9 The Jordan-Dedekind Chain Condition\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 74
2.1 Modular Pairs and Modular Elements\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 88
2.2 Distributive, Standard, and Neutral Elements\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 91
2.3 Af-Symmetry and Related Concepts\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 95
2.4 Wilcox Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 106
2.5 Finite-Modular and Weakly Modular AC Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 109
2.6 Orthomodular M-Symmetric Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 120
3.1 Mac Lane\'s Condition\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 125
3.2 Conditions for the Ideal Lattice\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 135
3.3 Interrelationships in Lattices with a Chain Condition\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 142
3.4 0-Conditions and Disjointness Properties\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 147
3.5 Interrelationships in Lattices with Complementation\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 153
4.1 The Mobius Function\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 164
4.2 Complements and Fixed Points\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 171
4.3 Supersolvable Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 175
4.4 Admissible Lattices and Cohen-Macaulay Posets\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 179
4.5 Consistent Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 187
4.6 Strong Lattices and Balanced Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 192
5.1 Diagrams and Covering Graphs\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 204
5.2 Path Length\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 209
5.3 Graph Isomorphisms of Graded Balanced Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 212
5.4 Semimodular Lattices with Isomorphic Covering Graphs\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 217
5.5 Centrally Symmetric Graphs and Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 220
5.6 Subgraphs of the Covering Graph\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 224
6.1 Rank and Covering Inequalities\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 227
6.2 Embeddings\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 238
6.3 Geometric Closure Operators\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 248
6.4 Semimodular Lattices and Selectors\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 259
6.5 Consistent Semimodular Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 266
6.6 Pseudomodular Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 274
7.1 The Characterization of Dilworth and Crawley\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 282
7.2 Avann\'s Characterization Theorem\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 284
7.3 Meet-Distributive Lattices and Convexity\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 297
7.4 Other Characterizations\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 301
8.1 The Kurosh-Ore Replacement Property\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 309
8.2 Dually Consistent Semimodular Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 312
8.3 Lattices of Subnormal Subgroups\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 315
8.4 Breadth and Reach\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 321
8.5 Boundary Lattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 324
9.1 Semilattices\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 327
9.2 Semigroups\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 334
9.3 Algebras\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 339
Master Reference List\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 351
Table of Notation\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0......Page 371
Index\0\0\0\0\0\0\0\0\0\0\0\0......Page 380




نظرات کاربران