دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.]
نویسندگان: Donald A. Neamen
سری:
ISBN (شابک) : 0071089020, 9780071089029
ناشر: McGraw-Hill
سال نشر: 2012
تعداد صفحات: 758
[784]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Semiconductor Physics and Devices: Basic Principles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک و دستگاه های نیمه هادی: اصول اساسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Page Title Page Contents Preface Prologue PART I—Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1.0 Preview 1.1 Semiconductor Materials 1.2 Types of Solids 1.3 Space Lattices 1.3.1 Primitive and Unit Cell 1.3.2 Basic Crystal Structures 1.3.3 Crystal Planes and Miller Indices 1.3.4 Directions in Crystals 1.4 The Diamond Structure 1.5 Atomic Bonding *1.6 Imperfections and Impurities in Solids 1.6.1 Imperfections in Solids 1.6.2 Impurities in Solids *1.7 Growth of Semiconductor Materials 1.7.1 Growth from a Melt 1.7.2 Epitaxial Growth 1.8 Summary Problems CHAPTER 2 Introduction to Quantum Mechanics 2.0 Preview 2.1 Principles of Quantum Mechanics 2.1.1 Energy Quanta 2.1.2 Wave–Particle Duality 2.1.3 The Uncertainty Principle 2.2 Schrodinger’s Wave Equation 2.2.1 The Wave Equation 2.2.2 Physical Meaning of the Wave Function 2.2.3 Boundary Conditions 2.3 Applications of Schrodinger’s Wave eQUATION 2.3.1 Electron in Free Space 2.3.2 The Infi nite Potential Well 2.3.3 The Step Potential Function 2.3.4 The Potential Barrier and Tunneling 2.4 Extensions of the Wave Theor to Atoms 2.4.1 The One-Electron Atom 2.4.2 The Periodic Table 2.5 Summary Problems CHAPTER 3 Introduction to the Quantum Theory of Solids 3.0 Preview 3.1 Allowed and Forbidden Energy Bands 3.1.1 Formation of Energy Bands *3.1.2 The Kronig–Penney Model 3.1.3 The k-Space Diagram 3.2 Electrical Conduction in Solids 3.2.1 The Energy Band and the Bond Model 3.2.2 Drift Current 3.2.3 Electron Effective Mass 3.2.4 Concept of the Hole 3.2.5 Metals, Insulators, and Semiconductors 3.3 Extension to Three Dimensions 3.3.1 The k-Space Diagrams of Si and GaAs 3.3.2 Additional Effective Mass Concepts 3.4 Density of States Function 3.4.1 Mathematical Derivation 3.4.2 Extension to Semiconductors 3.5 Statistical Mechanics 3.5.1 Statistical Laws 3.5.2 The Fermi–Dirac Probability Function 3.5.3 The Distribution Function and the Fermi Energy 3.6 Summary Problems CHAPTER 4 The Semiconductor in Equilibrium 4.0 Preview 4.1 Charge Carriers in Semiconductors 4.1.1 Equilibrium Distribution of Electrons and Holes 4.1.2 The no and po Equations 4.1.3 The Intrinsic Carrier Concentration 4.1.4 The Intrinsic Fermi-Level Position 4.2 Dopant Atoms and Energy Levels 4.2.1 Qualitative Description 4.2.2 Ionization Energy 4.2.3 Group III–V Semiconductors 4.3 The Extrinsic Semiconductor 4.3.1 Equilibrium Distribution of Electrons and Holes 4.3.2 The n0 p0 Product *4.3.3 The Fermi–Dirac Integral 4.3.4 Degenerate and Nondegenerate Semiconductors 4.4 Statistics of Donors and Acceptors 4.4.1 Probability Function 4.4.2 Complete Ionization and Freeze-Out 4.5 Charge Neutrality 4.5.1 Compensated Semiconductors 4.5.2 Equilibrium Electron and Hole Concentrations 4.6 Position of Fermi Energy Level 4.6.1 Mathematical Derivation 4.6.2 Variation of EF with Doping Concentration and Temperature 4.6.3 Relevance of the Fermi Energy 4.7 Summary Problems CHAPTER 5 Carrier Transport Phenomena 5.0 Preview 5.1 Carrier Drift 5.1.1 Drift Current Density 5.1.2 Mobility Effects 5.1.3 Conductivity 5.1.4 Velocity Saturation 5.2 Carrier Diffusion 5.2.1 Diffusion Current Density 5.2.2 Total Current Density 5.3 Graded Impurity Distribution 5.3.1 Induced Electric Field 5.3.2 The Einstein Relation *5.4 The Hall Effect 5.5 Summary Problems CHAPTER 6 Nonequilibrium Excess Carriers in Semiconductors 6.0 Preview 6.1 Carrier Generation and Recombination 6.1.1 The Semiconductor in Equilibrium 6.1.2 Excess Carrier Generation and Recombimation 6.2 Characteristics of Excess Carriers 6.2.1 Continuity Equations 6.2.2 Time-Dependent Diffusion Equations 6.3 Ambipolar Transport 6.3.1 Derivation of the Ambipolar Transport Equation 6.3.2 Limits of Extrinsic Doping and Low Injection 6.3.3 Applications of the Ambipolar Transport Equation 6.3.4 Dielectric Relaxation Time Constant *6.3.5 Haynes–Shockley Experiment 6.4 Quasi-Fermi Energy Levels *6.5 Excess Carrier Lifetime 6.5.1 Shockley–Read–Hall Theory of Recombination 6.5.2 Limits of Extrinsic Doping and Low Injection *6.6 Surface Effects 6.6.1 Surface States 6.6.2 Surface Recombination Velocity 6.7 Summary Problems PART II—Fundamental Semiconductor Devices CHAPTER 7 The pn Junction 7.0 Preview 7.1 Basic Structure of the pn Junction 7.2 Zero Applied Bias 7.2.1 Built-in Potential Barrier 7.2.2 Electric Field 7.2.3 Space Charge Width 7.3 Reverse Applied Bias 7.3.1 Space Charge Width and Electric Field 7.3.2 Junction Capacitance 7.3.3 One-Sided Junctions 7.4 Junction Breakdown *7.5 Nonuniformly Doped Junctions 7.5.1 Linearly Graded Junctions 7.5.2 Hyperabrupt Junctions 7.6 Summary Problems CHAPTER 8 The pn Junction Diode 8.0 Preview 8.1 pn Junction Current 8.1.1 Qualitative Description of Charge Flow in a pn Junction 8.1.2 Ideal Current–Voltage Relationship 8.1.3 Boundary Conditions 8.1.4 Minority Carrier Distribution 8.1.5 Ideal pn Junction Current 8.1.6 Summary of Physics 8.1.7 Temperature Effects 8.1.8 The “Short” Diode 8.2 Generation–Recombination Currents and High-Injection Levels 8.2.1 Generation–Recombination Currents 8.2.2 High-Level Injection 8.3 Small-Signal Model of the pn Junction 8.3.1 Diffusion Resistance 8.3.2 Small-Signal Admittance 8.3.3 Equivalent Circuit *8.4 Charge Storage and Diode Transients 8.4.1 The Turn-off Transient 8.4.2 The Turn-on Transient *8.5 The Tunnel Diode 8.6 Summary Problems CHAPTER 9 Metal–Semiconductor and Semiconductor Heterojunctions 9.0 Preview 9.1 The Schottky Barrier Diode 9.1.1 Qualitative Characteristics 9.1.2 Ideal Junction Properties 9.1.3 Nonideal Effects on the Barrier Height 9.1.4 Current–Voltage Relationship 9.1.5 Comparison of the Schottky Barrier Diode and the pn Junction Diode 9.2 Metal–Semiconductor Ohmic Contacts 9.2.1 Ideal Nonrectifying Barrier 9.2.2 Tunneling Barrier 9.2.3 Specifi c Contact Resistance 9.3 Heterojunctions 9.3.1 Heterojunction Materials 9.3.2 Energy-Band Diagrams 9.3.3 Two-Dimensional Electron Gas *9.3.4 Equilibrium Electrostatics *9.3.5 Current–Voltage Characteristics 9.4 Summary Problems CHAPTER 10 Fundamentals of the Metal–Oxide–Oxide-Semiconductor Field-Effect Transistor 10.0 Preview 10.1 The Two-Terminal MOS Structure 10.1.1 Energy-Band Diagrams 10.1.2 Depletion Layer Thickness 10.1.3 Surface Charge Density 10.1.4 Work Function Differences 10.1.5 Flat-Band Voltage 10.1.6 Threshold Voltage 10.2 Capacitance–Voltage Characteristics 10.2.1 Ideal C–V Characteristics 10.2.2 Frequency Effects 10.2.3 Fixed Oxide and Interface Charge Effects 10.3 The Basic MOSFET Operation 10.3.1 MOSFET Structures 10.3.2 Current–Voltage Relationship-Concepts *10.3.3 Current–Voltage Relationship—Mathmatical Derivation 10.3.4 Transconductance 10.3.5 Substrate Bias Effects 10.4 Frequency Limitations 10.4.1 Small-Signal Equivalent Circuit 10.4.2 Frequency Limitation Factors and Cotoff Frequency Problems *10.5 The CMOS Technology 10.6 Summary CHAPTER 11 Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts 11.0 Preview 11.1 Nonideal Effects 11.1.1 Subthreshold Conduction 11.1.2 Channel Length Modulation 11.1.3 Mobility Variation 11.1.4 Velocity Saturation 11.1.5 Ballistic Transport 11.2 MOSFET Scaling 11.2.1 Constant-Field Scaling 11.2.2 Threshold Voltage—First Approximation 11.2.3 Generalized Scaling 11.3 Threshold Voltage Modifi cations 11.3.1 Short-Channel Effects 11.3.2 Narrow-Channel Effects 11.4 Additional Electrical Characteristics 11.4.1 Breakdown Voltage *11.4.2 The Lightly Doped Drain Transistor 11.4.3 Threshold Adjustment by Ion Implatation *11.5 Radiation and Hot-Electron Effects 11.5.1 Radiation-Induced Oxide Charge 11.5.2 Radiation-Induced Interface States 11.5.3 Hot-Electron Charging Effects 11.6 Summary Problems CHAPTER 12 The Bipolar Transistor 491 12.0 Preview 12.1 The Bipolar Transistor Action 12.1.1 The Basic Principle of Operation 12.1.2 Simplifi ed Transistor Current Relation—Qualitative Discussion 12.1.3 The Modes of Operation 12.1.4 Amplifi cation with Bipolar Transistors 12.2 Minority Carrier Distribution 12.2.1 Forward-Active Mode 12.2.2 Other Modes of Operation 12.3 Transistor Currents and Low-Frequency Common-Base Current Gain 12.3.1 Current Gain—Contributing Factors 12.3.2 Derivation of Transistor Current Components and Current Gain Factors 12.3.3 Summary 12.3.4 Example Calculations of the Gain Factors 12.4 Nonideal Effects 12.4.1 Base Width Modulation 12.4.2 High Injection 12.4.3 Emitter Bandgap Narrowing 12.4.4 Current Crowding *12.4.5 Nonuniform Base Doping 12.4.6 Breakdown Voltage 12.5 Equivalent Circuit Models *12.5.1 Ebers–Moll Model 12.5.2 Gummel–Poon Model 12.5.3 Hybrid-Pi Model 12.6 Frequency Limitations 12.6.1 Time-Delay Factors 12.6.2 Transistor Cutoff Frequency 12.7 Large-Signal Switching 12.7.1 Switching Characteristics 12.7.2 The Schottky-Clamped Transistor *12.8 Other Bipolar Transistor Structures 12.8.1 Polysilicon Emitter BJT 12.8.2 Silicon–Germanium Base Transistor 12.8.3 Heterojunction Bipolar Transistors 12.9 Summary Problems CHAPTER 13 The Junction Field-Effect Transistor 13.0 Preview 13.1 JFET Concepts 13.1.1 Basic pn JFET Operation 13.1.2 Basic MESFET Operation 13.2 The Device Characteristics 13.2.1 Internal Pinchoff Voltage, Pinchoff Voltage, and Drain-to-Source Saturation Voltage 13.2.2 Ideal DC Current–Voltage Relationship—Depletion Mode JFET 13.2.3 Transconductance 13.2.4 The MESFET *13.3 Nonideal Effects 13.3.1 Channel Length Modulation 13.3.2 Velocity Saturation Effects 13.3.3 Subthreshold and Gate Current Effects *13.4 Equivalent Circuit and Frequency Limitations 13.4.1 Small-Signal Equivalent Circuit 13.4.2 Frequency Limitation Factors and Cutoff Frequeney *13.5 High Electron Mobility Transistor 13.5.1 Quantum Well Structures 13.5.2 Transistor Performance 13.6 Summary Problems PART III—Specialized Semiconductor Devices CHAPTER 14 Optical Devices 14.0 Preview 14.1 Optical Absorption 14.1.1 Photon Absorption Coeffi cient 14.1.2 Electron–Hole Pair Generation Rate 14.2 Solar Cells 14.2.1 The pn Junction Solar Cell 14.2.2 Conversion Effi ciency and Solar Concentration 14.2.3 Nonuniform Absorption Effects 14.2.4 The Heterojunction Solar Cell 14.2.5 Amorphous Silicon Solar Cells 14.3 Photodetectors 14.3.1 Photoconduc 14.3.2 Photodiode 14.3.3 PIN Photodiode 14.3.4 Avalanche Photodiode 14.3.5 Phototransistor 14.4 Photoluminescence and Electroluminescence 14.4.1 Basic Transitions 14.4.2 Luminescent Effi ciency 14.4.3 Materials 14.5 Light Emitting Diodes 14.5.1 Generation of Light 14.5.2 Internal Quantum Effi ciency 14.5.3 External Quantum Efficiency 14.5.4 LED Devices 14.6 Laser Diodes 14.6.1 Stimulated Emission and Population Inversion 14.6.2 Optical Cavity 14.6.3 Threshold Current 14.6.4 Device Structures and Characteristice 14.7 Summary Problems CHAPTER 15 Semiconductor Microwave and Power Devices 15.0 Preview 15.1 Tunnel Diode 15.2 Gunn Diode 15.3 Impatt Diode 15.4 Power Bipolar Transistors 15.4.1 Vertical Power Transistor Structure 15.4.2 Power Transistor Characteristics 15.4.3 Darlington Pair Confi guration 15.5 Power MOSFETs 15.5.1 Power Transistor Structures 15.5.2 Power MOSFET Characteristics 15.5.3 Parasitic BJT 15.6 The Thyristor 15.6.1 The Basic Characteristics 15.6.2 Triggering the SCR 15.6.3 SCR Turn-Off 15.6.4 Device Structures 15.7 Summary Problems APPENDIX A Selected List of Symbols APPENDIX B System of Units, Conversion Factors, and General Constants APPENDIX C The Periodic Table APPENDIX D Unit of Energy—The Electron Volt APPENDIX E “Derivation” of Schrodinger’s Wave Equation APPENDIX F Effective Mass Concepts APPENDIX G The Error Function APPENDIX H Answers to Selected Problems Index