ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Semiconductor Physics and Devices: Basic Principles

دانلود کتاب فیزیک و دستگاه های نیمه هادی: اصول اساسی

Semiconductor Physics and Devices: Basic Principles

مشخصات کتاب

Semiconductor Physics and Devices: Basic Principles

ویرایش: [4 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0071089020, 9780071089029 
ناشر: McGraw-Hill 
سال نشر: 2012 
تعداد صفحات: 758
[784] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 Mb 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Semiconductor Physics and Devices: Basic Principles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک و دستگاه های نیمه هادی: اصول اساسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover Page
Title Page
Contents
Preface
Prologue
PART I—Semiconductor Material Properties
	CHAPTER 1 The Crystal Structure of Solids
		1.0 Preview
		1.1 Semiconductor Materials
		1.2 Types of Solids
		1.3 Space Lattices
			1.3.1 Primitive and Unit Cell
			1.3.2 Basic Crystal Structures
			1.3.3 Crystal Planes and Miller Indices
			1.3.4 Directions in Crystals
		1.4 The Diamond Structure
		1.5 Atomic Bonding
		*1.6 Imperfections and Impurities in Solids
			1.6.1 Imperfections in Solids
			1.6.2 Impurities in Solids
		*1.7 Growth of Semiconductor Materials
			1.7.1 Growth from a Melt
			1.7.2 Epitaxial Growth
		1.8 Summary
			Problems
	CHAPTER 2 Introduction to Quantum Mechanics
		2.0 Preview
		2.1 Principles of Quantum Mechanics
			2.1.1 Energy Quanta
			2.1.2 Wave–Particle Duality
			2.1.3 The Uncertainty Principle
		2.2 Schrodinger’s Wave Equation
			2.2.1 The Wave Equation
			2.2.2 Physical Meaning of the Wave Function
			2.2.3 Boundary Conditions
		2.3 Applications of Schrodinger’s Wave eQUATION
			2.3.1 Electron in Free Space
			2.3.2 The Infi nite Potential Well
			2.3.3 The Step Potential Function
			2.3.4 The Potential Barrier and Tunneling
		2.4 Extensions of the Wave Theor to Atoms
			2.4.1 The One-Electron Atom
			2.4.2 The Periodic Table
		2.5 Summary
			Problems
	CHAPTER 3 Introduction to the Quantum Theory of Solids
		3.0 Preview
		3.1 Allowed and Forbidden Energy Bands
			3.1.1 Formation of Energy Bands
			*3.1.2 The Kronig–Penney Model
			3.1.3 The k-Space Diagram
		3.2 Electrical Conduction in Solids
			3.2.1 The Energy Band and the Bond Model
			3.2.2 Drift Current
			3.2.3 Electron Effective Mass
			3.2.4 Concept of the Hole
			3.2.5 Metals, Insulators, and Semiconductors
		3.3 Extension to Three Dimensions
			3.3.1 The k-Space Diagrams of Si and GaAs
			3.3.2 Additional Effective Mass Concepts
		3.4 Density of States Function
			3.4.1 Mathematical Derivation
			3.4.2 Extension to Semiconductors
		3.5 Statistical Mechanics
			3.5.1 Statistical Laws
			3.5.2 The Fermi–Dirac Probability Function
			3.5.3 The Distribution Function and the Fermi Energy
		3.6 Summary
		Problems
	CHAPTER 4 The Semiconductor in Equilibrium
		4.0 Preview
		4.1 Charge Carriers in Semiconductors
			4.1.1 Equilibrium Distribution of Electrons and Holes
			4.1.2 The no and po Equations
			4.1.3 The Intrinsic Carrier Concentration
			4.1.4 The Intrinsic Fermi-Level Position
		4.2 Dopant Atoms and Energy Levels
			4.2.1 Qualitative Description
			4.2.2 Ionization Energy
			4.2.3 Group III–V Semiconductors
		4.3 The Extrinsic Semiconductor
			4.3.1 Equilibrium Distribution of Electrons and Holes
			4.3.2 The n0 p0 Product
			*4.3.3 The Fermi–Dirac Integral
			4.3.4 Degenerate and Nondegenerate Semiconductors
		4.4 Statistics of Donors and Acceptors
			4.4.1 Probability Function
			4.4.2 Complete Ionization and Freeze-Out
		4.5 Charge Neutrality
			4.5.1 Compensated Semiconductors
			4.5.2 Equilibrium Electron and Hole Concentrations
		4.6 Position of Fermi Energy Level
			4.6.1 Mathematical Derivation
			4.6.2 Variation of EF with Doping Concentration and Temperature
			4.6.3 Relevance of the Fermi Energy
		4.7 Summary
			Problems
	CHAPTER 5 Carrier Transport Phenomena
		5.0 Preview
		5.1 Carrier Drift
			5.1.1 Drift Current Density
			5.1.2 Mobility Effects
			5.1.3 Conductivity
			5.1.4 Velocity Saturation
		5.2 Carrier Diffusion
			5.2.1 Diffusion Current Density
			5.2.2 Total Current Density
		5.3 Graded Impurity Distribution
			5.3.1 Induced Electric Field
			5.3.2 The Einstein Relation
		*5.4 The Hall Effect
		5.5 Summary
			Problems
	CHAPTER 6 Nonequilibrium Excess Carriers in Semiconductors
		6.0 Preview
		6.1 Carrier Generation and Recombination
			6.1.1 The Semiconductor in Equilibrium
			6.1.2 Excess Carrier Generation and Recombimation
		6.2 Characteristics of Excess Carriers
			6.2.1 Continuity Equations
			6.2.2 Time-Dependent Diffusion Equations
		6.3 Ambipolar Transport
			6.3.1 Derivation of the Ambipolar Transport Equation
			6.3.2 Limits of Extrinsic Doping and Low Injection
			6.3.3 Applications of the Ambipolar Transport Equation
			6.3.4 Dielectric Relaxation Time Constant
			*6.3.5 Haynes–Shockley Experiment
		6.4 Quasi-Fermi Energy Levels
		*6.5 Excess Carrier Lifetime
			6.5.1 Shockley–Read–Hall Theory of Recombination
			6.5.2 Limits of Extrinsic Doping and Low Injection
		*6.6 Surface Effects
			6.6.1 Surface States
			6.6.2 Surface Recombination Velocity
		6.7 Summary
			Problems
PART II—Fundamental Semiconductor Devices
	CHAPTER 7 The pn Junction
		7.0 Preview
		7.1 Basic Structure of the pn Junction
		7.2 Zero Applied Bias
			7.2.1 Built-in Potential Barrier
			7.2.2 Electric Field
			7.2.3 Space Charge Width
		7.3 Reverse Applied Bias
			7.3.1 Space Charge Width and Electric Field
			7.3.2 Junction Capacitance
			7.3.3 One-Sided Junctions
		7.4 Junction Breakdown
		*7.5 Nonuniformly Doped Junctions
			7.5.1 Linearly Graded Junctions
			7.5.2 Hyperabrupt Junctions
		7.6 Summary
			Problems
	CHAPTER 8 The pn Junction Diode
		8.0 Preview
		8.1 pn Junction Current
			8.1.1 Qualitative Description of Charge Flow in a pn Junction
			8.1.2 Ideal Current–Voltage Relationship
			8.1.3 Boundary Conditions
			8.1.4 Minority Carrier Distribution
			8.1.5 Ideal pn Junction Current
			8.1.6 Summary of Physics
			8.1.7 Temperature Effects
			8.1.8 The “Short” Diode
		8.2 Generation–Recombination Currents and High-Injection Levels
			8.2.1 Generation–Recombination Currents
			8.2.2 High-Level Injection
		8.3 Small-Signal Model of the pn Junction
			8.3.1 Diffusion Resistance
			8.3.2 Small-Signal Admittance
			8.3.3 Equivalent Circuit
		*8.4 Charge Storage and Diode Transients
			8.4.1 The Turn-off Transient
			8.4.2 The Turn-on Transient
		*8.5 The Tunnel Diode
		8.6 Summary
			Problems
	CHAPTER 9 Metal–Semiconductor and Semiconductor Heterojunctions
		9.0 Preview
		9.1 The Schottky Barrier Diode
			9.1.1 Qualitative Characteristics
			9.1.2 Ideal Junction Properties
			9.1.3 Nonideal Effects on the Barrier Height
			9.1.4 Current–Voltage Relationship
			9.1.5 Comparison of the Schottky Barrier Diode and the pn Junction Diode
		9.2 Metal–Semiconductor Ohmic Contacts
			9.2.1 Ideal Nonrectifying Barrier
			9.2.2 Tunneling Barrier
			9.2.3 Specifi c Contact Resistance
		9.3 Heterojunctions
			9.3.1 Heterojunction Materials
			9.3.2 Energy-Band Diagrams
			9.3.3 Two-Dimensional Electron Gas
			*9.3.4 Equilibrium Electrostatics
			*9.3.5 Current–Voltage Characteristics
		9.4 Summary
			Problems
	CHAPTER 10 Fundamentals of the Metal–Oxide–Oxide-Semiconductor Field-Effect Transistor
		10.0 Preview
		10.1 The Two-Terminal MOS Structure
			10.1.1 Energy-Band Diagrams
			10.1.2 Depletion Layer Thickness
			10.1.3 Surface Charge Density
			10.1.4 Work Function Differences
			10.1.5 Flat-Band Voltage
			10.1.6 Threshold Voltage
		10.2 Capacitance–Voltage Characteristics
			10.2.1 Ideal C–V Characteristics
			10.2.2 Frequency Effects
			10.2.3 Fixed Oxide and Interface Charge Effects
		10.3 The Basic MOSFET Operation
			10.3.1 MOSFET Structures
			10.3.2 Current–Voltage Relationship-Concepts
			*10.3.3 Current–Voltage Relationship—Mathmatical Derivation
			10.3.4 Transconductance
			10.3.5 Substrate Bias Effects
		10.4 Frequency Limitations
			10.4.1 Small-Signal Equivalent Circuit
			10.4.2 Frequency Limitation Factors and Cotoff Frequency
			Problems
		*10.5 The CMOS Technology
		10.6 Summary
	CHAPTER 11 Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts
		11.0 Preview
		11.1 Nonideal Effects
			11.1.1 Subthreshold Conduction
			11.1.2 Channel Length Modulation
			11.1.3 Mobility Variation
			11.1.4 Velocity Saturation
			11.1.5 Ballistic Transport
		11.2 MOSFET Scaling
			11.2.1 Constant-Field Scaling
			11.2.2 Threshold Voltage—First Approximation
			11.2.3 Generalized Scaling
		11.3 Threshold Voltage Modifi cations
			11.3.1 Short-Channel Effects
			11.3.2 Narrow-Channel Effects
		11.4 Additional Electrical Characteristics
			11.4.1 Breakdown Voltage
			*11.4.2 The Lightly Doped Drain Transistor
			11.4.3 Threshold Adjustment by Ion Implatation
		*11.5 Radiation and Hot-Electron Effects
			11.5.1 Radiation-Induced Oxide Charge
			11.5.2 Radiation-Induced Interface States
			11.5.3 Hot-Electron Charging Effects
		11.6 Summary
			Problems
	CHAPTER 12 The Bipolar Transistor 491
		12.0 Preview
		12.1 The Bipolar Transistor Action
			12.1.1 The Basic Principle of Operation
			12.1.2 Simplifi ed Transistor Current Relation—Qualitative Discussion
			12.1.3 The Modes of Operation
			12.1.4 Amplifi cation with Bipolar Transistors
		12.2 Minority Carrier Distribution
			12.2.1 Forward-Active Mode
			12.2.2 Other Modes of Operation
		12.3 Transistor Currents and Low-Frequency Common-Base Current Gain
			12.3.1 Current Gain—Contributing Factors
			12.3.2 Derivation of Transistor Current Components and Current Gain Factors
			12.3.3 Summary
			12.3.4 Example Calculations of the Gain Factors
		12.4 Nonideal Effects
			12.4.1 Base Width Modulation
			12.4.2 High Injection
			12.4.3 Emitter Bandgap Narrowing
			12.4.4 Current Crowding
			*12.4.5 Nonuniform Base Doping
			12.4.6 Breakdown Voltage
		12.5 Equivalent Circuit Models
			*12.5.1 Ebers–Moll Model
			12.5.2 Gummel–Poon Model
			12.5.3 Hybrid-Pi Model
		12.6 Frequency Limitations
			12.6.1 Time-Delay Factors
			12.6.2 Transistor Cutoff Frequency
		12.7 Large-Signal Switching
			12.7.1 Switching Characteristics
			12.7.2 The Schottky-Clamped Transistor
		*12.8 Other Bipolar Transistor Structures
			12.8.1 Polysilicon Emitter BJT
			12.8.2 Silicon–Germanium Base Transistor
			12.8.3 Heterojunction Bipolar Transistors
		12.9 Summary
			Problems
	CHAPTER 13 The Junction Field-Effect Transistor
		13.0 Preview
		13.1 JFET Concepts
			13.1.1 Basic pn JFET Operation
			13.1.2 Basic MESFET Operation
		13.2 The Device Characteristics
			13.2.1 Internal Pinchoff Voltage, Pinchoff Voltage, and Drain-to-Source Saturation Voltage
			13.2.2 Ideal DC Current–Voltage Relationship—Depletion Mode JFET
			13.2.3 Transconductance
			13.2.4 The MESFET
		*13.3 Nonideal Effects
			13.3.1 Channel Length Modulation
			13.3.2 Velocity Saturation Effects
			13.3.3 Subthreshold and Gate Current Effects
		*13.4 Equivalent Circuit and Frequency Limitations
			13.4.1 Small-Signal Equivalent Circuit
			13.4.2 Frequency Limitation Factors and Cutoff Frequeney
		*13.5 High Electron Mobility Transistor
			13.5.1 Quantum Well Structures
			13.5.2 Transistor Performance
		13.6 Summary
			Problems
PART III—Specialized Semiconductor Devices
	CHAPTER 14 Optical Devices
		14.0 Preview
		14.1 Optical Absorption
			14.1.1 Photon Absorption Coeffi cient
			14.1.2 Electron–Hole Pair Generation Rate
		14.2 Solar Cells
			14.2.1 The pn Junction Solar Cell
			14.2.2 Conversion Effi ciency and Solar Concentration
			14.2.3 Nonuniform Absorption Effects
			14.2.4 The Heterojunction Solar Cell
			14.2.5 Amorphous Silicon Solar Cells
		14.3 Photodetectors
			14.3.1 Photoconduc
			14.3.2 Photodiode
			14.3.3 PIN Photodiode
			14.3.4 Avalanche Photodiode
			14.3.5 Phototransistor
		14.4 Photoluminescence and Electroluminescence
			14.4.1 Basic Transitions
			14.4.2 Luminescent Effi ciency
			14.4.3 Materials
		14.5 Light Emitting Diodes
			14.5.1 Generation of Light
			14.5.2 Internal Quantum Effi ciency
			14.5.3 External Quantum Efficiency
			14.5.4 LED Devices
		14.6 Laser Diodes
			14.6.1 Stimulated Emission and Population Inversion
			14.6.2 Optical Cavity
			14.6.3 Threshold Current
			14.6.4 Device Structures and Characteristice
		14.7 Summary
			Problems
	CHAPTER 15 Semiconductor Microwave and Power Devices
		15.0 Preview
		15.1 Tunnel Diode
		15.2 Gunn Diode
		15.3 Impatt Diode
		15.4 Power Bipolar Transistors
			15.4.1 Vertical Power Transistor Structure
			15.4.2 Power Transistor Characteristics
			15.4.3 Darlington Pair Confi guration
		15.5 Power MOSFETs
			15.5.1 Power Transistor Structures
			15.5.2 Power MOSFET Characteristics
			15.5.3 Parasitic BJT
		15.6 The Thyristor
			15.6.1 The Basic Characteristics
			15.6.2 Triggering the SCR
			15.6.3 SCR Turn-Off
			15.6.4 Device Structures
		15.7 Summary
			Problems
APPENDIX A Selected List of Symbols
APPENDIX B System of Units, Conversion Factors, and General Constants
APPENDIX C The Periodic Table
APPENDIX D Unit of Energy—The Electron Volt
APPENDIX E “Derivation” of Schrodinger’s Wave Equation
APPENDIX F Effective Mass Concepts
APPENDIX G The Error Function
APPENDIX H Answers to Selected Problems
Index




نظرات کاربران