دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Michael Kneissl (editor), Andreas Knorr (editor), Stephan Reitzenstein (editor), Axel Hoffmann (editor) سری: Springer in Solid-State Sciences ISBN (شابک) : 3030356558, 9783030356552 ناشر: Springer Nature سال نشر: 2020 تعداد صفحات: 572 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 133 مگابایت
در صورت تبدیل فایل کتاب Semiconductor Nanophotonics: Materials, Models, and Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوفوتونیک نیمه هادی: مواد ، مدلها و دستگاهها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نمای کلی جامعی از پیشرفتهای روز در توسعه نانوساختارهای نیمهرسانا و دستگاههای نانوفوتونیکی ارائه میدهد. فرآیندهای رشد همپایی برای نقاط کوانتومی مبتنی بر GaAs و GaN و چاههای کوانتومی را پوشش میدهد، خواص نوری، الکترونیکی و ارتعاشی اساسی نانومواد را توصیف میکند و به طراحی و اجرای دستگاههای مختلف نانوفوتونیکی میپردازد. اینها شامل لیزرهای ساطع کننده سطح حفره عمودی با کارآمدی انرژی و سرعت بالا (VCSEL) و نانو لیزرهای حفره فلزی بسیار کوچک برای کاربرد در سیستم های چند ترابوس می باشد. موتورهای ورودی/خروجی فوتونیک سیلیکونی مبتنی بر ادغام هیبریدی VCSEL برای ارتباط تراشه به تراشه بسیار کارآمد. سیستمهای کلید کوانتومی الکتریکی مبتنی بر فرستندههای فوتون درهمتنیده و q بیت و پیادهسازی آنها در شبکههای اطلاعات واقعی. و دیودهای لیزر UV عمیق مبتنی بر AlGaN برای کاربرد در تشخیص پزشکی، سنجش گاز، طیفسنجی، و چاپ سه بعدی.
نتایج تجربی با بررسی مدلهای نظری که دستگاههای نانوفوتونیکی و مواد پایه آنها را توصیف میکنند، همراه است. . این کتاب توضیح میدهد که چگونه انتقال نوری در مواد فعال، مانند نقاط کوانتومی نیمهرسانا و چاههای کوانتومی، با استفاده از یک رویکرد کوانتومی به دینامیک الکترونهای حالت جامد تحت محصور کوانتومی و برهمکنش آنها با فونونها و همچنین خارجیشان توصیف میشود. پمپاژ توسط جریان های الکتریکی این کتاب با دامنه گسترده و دقیق خود، در واقع یک منبع پیشرفته برای محققان، مهندسان و دانشجویان مقطع کارشناسی ارشد در زمینه مواد نیمه هادی، دستگاه های الکترونیک نوری و سیستم های فوتونیک است.
This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing.
The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.
Preface Contents Contributors 1 A Short Introduction to Semiconductor Nanophotonics 1.1 Nanophotonics and Internet Traffic 1.2 Nanophotonics and Cyber Security 1.3 Economic Impact of Nanophotonics 1.4 Semiconductor Nanophotonics References 2 Submonolayer Quantum Dots 2.1 Carrier Localization in Quantum Dots 2.1.1 Stranski-Krastanow and Submonolayer Quantum Dots 2.1.2 Electronic Structure of InAs Submonolayer Quantum Dots 2.2 Epitaxy of Submonolayer Quantum Dots 2.2.1 InAs/GaAs Submonolayers 2.2.2 InAs/GaAs Submonolayers with Antimony 2.3 Atomic Structure of Submonolayer Quantum Dots 2.3.1 Methods for Structural Analysis 2.3.2 Analysis of InAs Submonolayer Depositions 2.3.3 Analysis of InAs Submonolayer Depositions with Antimony 2.4 Optical and Excitonic Properties 2.4.1 InAs Submonolayer Quantum-Dot Ensembles 2.4.2 InAs:Sb Submonolayer Quantum-Dot Ensembles 2.5 Devices Based on Submonolayer Quantum Dots 2.5.1 Gain and Efficiency 2.5.2 Amplitude-Phase Coupling 2.6 Conclusion and Perspectives References 3 Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources 3.1 Site-Controlled Nucleation of Quantum Dots 3.2 Simulation of Strain 3.2.1 Model for Strain Simulation 3.2.2 Strain in a Mesa and in a Lamella Structure 3.3 Nucleation Control by a Buried Aperture Stressor 3.3.1 Development of a Buried-Stressor Design 3.3.2 Proof-of-Principle for Stressor-Controlled Nucleation 3.3.3 Site-Control of Single Quantum Dots 3.4 Strain Measurement Applying Electron Holography 3.4.1 Reconstruction of the Strain Tensor 3.4.2 Phase Analysis of Dark-Field Electron Holography 3.4.3 Strain Analysis in a Lamella of a GaAs Mesa 3.5 Single-Photon Source Based on Stressor-Induced Site Control of Quantum Dots 3.5.1 Development of an Electroluminescence Quantum-Dot Diode 3.5.2 Operation Characteristics of a Single-Photon Source 3.5.3 Development of a Resonant-Cavity Structure 3.6 Realization of an Efficient Current Injection into a Single Quantum Dot 3.6.1 Modeling of the Current Flow in the Device 3.6.2 Current Confinement in pin and ppn Designs 3.6.3 Demonstration of a ppn QD Diode with Efficient Current Confinement 3.7 Conclusion and Perspectives References 4 Coherent and Incoherent Dynamics in Quantum Dots and Nanophotonic Devices 4.1 Introduction 4.2 Ultrafast Carrier Dynamics in Semiconductors with Reduced Dimensionality 4.2.1 Ultrafast Gain and Phase Recovery Dynamics 4.2.2 Ultrafast Coherent Optical Nonlinearities 4.2.3 Crossed Excitons 4.2.4 Quantum State Tomography 4.3 Multisection Mode-Locked Semiconductor Lasers 4.3.1 Delay Differential Equation Modeling 4.3.2 Timing Jitter Calculation 4.3.3 Reducing Timing Jitter by Optical Perturbations 4.3.4 Tapered Multi-section Mode-Locked Laser 4.4 Conclusion References 5 Optical and Structural Properties of Nitride Based Nanostructures 5.1 Introduction 5.2 Advanced Tools for Nanostructure Characterization 5.2.1 TEM/STEM-CL 5.2.2 Tip-Enhanced Raman Spectroscopy (TERS) 5.2.3 UV Optical and Quantum-Optical Characterization 5.2.4 XRD 5.2.5 Scanning Tunneling Microscopy and Spectroscopy (STM/STS) 5.3 Analysis of Nanostructure Growth in Nitrides 5.3.1 Growth of Nitride Based Nano- and Micro-columns 5.4 Optical Analysis of Low-Dimensional Nitrides 5.4.1 Luminescence and Composition Inhomogeneities in InGaN/GaN Micro-columns 5.4.2 InGaN/GaN Core-Shell Nanorods with Thick InGaN Shell 5.4.3 Full InGaN/GaN LED Micro-column Structures 5.4.4 Shielding Electric Fields in Nanowire Based Quantum-Heterostructures 5.4.5 Optical Properties and Charge Carrier Dynamics in 1D Quantum Wires 5.5 Conclusion and Perspectives References 6 Theory of Spectroscopy and Light Emission of Semiconductors Nanostructures 6.1 Introduction 6.2 State of the Art of Microscopic Description of Quantum Dots 6.2.1 Quantum Dot Model 6.2.2 Electron-Light Interaction 6.2.3 Electron-Phonon Interaction 6.2.4 Coulomb Interaction 6.3 Coupled Quantum Dot-Cavity Structures 6.3.1 Correlation Function and Master Equation 6.3.2 Polarization-Entanglement 6.3.3 Spatial Cross Correlation of Weakly and Strongly Coupled Modes: Single, Bunched and Heralded QD Photon Sources 6.3.4 Effective Description of the Few and Many Emitter Limit and Application to Many Emitter Nanolasing 6.4 Intraband Transitions Between Bound Quantum Dot States and States of the Host Medium 6.4.1 Quantum Dot-Continuum Model System and Pump Probe Setup 6.4.2 All-Optical Reconstruction of Quantum Dot Wave Functions 6.4.3 Influence of Coulomb Coupling on Bound-Continuum Intraband Transitions 6.5 Hybrid Density Matrix Approach as a Factorization Scheme for Many-Body Systems 6.6 Two-Dimensional Spectroscopy in Semiconductor Nanostructures 6.6.1 Theory of Four-Wave Mixing Spectroscopy 6.6.2 Mechanisms of Coulomb Interaction in Quantum Dots 6.6.3 Phase-Referenced 2D Spectroscopy of Coherently Coupled Individual QDs 6.6.4 Förster and Dexter Transfer Processes in Coupled Nanostructures 6.6.5 Localization Dynamics of Excitons in Disordered Semiconductor Quantum Wells 6.7 Conclusion References 7 Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices 7.1 Introduction 7.2 Basic Concepts 7.2.1 Electronic Transport 7.2.2 Optical Fields 7.2.3 Thermodynamics 7.3 Quantum Dot Based Light-Emitting Devices 7.3.1 Quantum Dot Lasers 7.3.2 Single-Photon Sources 7.4 Numerical Methods 7.4.1 Numerical Methods for the Drift-Diffusion Equations 7.4.2 Finite-Element Approach to Maxwell\'s Equations 7.5 Applications 7.5.1 Quantum Dot Single-Photon Sources 7.5.2 Vertical-Cavity Surface-Emitting Lasers 7.5.3 Grating Couplers 7.5.4 Efficient Current Injection into Oxide-Confined Pn-Diodes 7.6 Conclusion and Outlook References 8 Deterministic Quantum Devices for Optical Quantum Communication 8.1 Introduction 8.2 Numerical Modeling and Optimization of Quantum Devices for the Generation and Distribution of Single Photons 8.2.1 A Setup for a QD-Based Fiber-Coupled Single-Photon Source 8.2.2 Numerical Method for the Efficient Simulation of Optical Devices with Embedded QDs 8.2.3 Numerical Optimization of the Light Extraction from a Single-Photon Source 8.2.4 Numerical Simulation of a QD-Based Single-Photon Emitting Diode—The Role of Electrical Carrier Injection 8.3 Deterministic Fabrication Technologies 8.3.1 Ex-situ Schemes 8.3.2 In-situ Schemes 8.4 Quantum Light Sources Based on Deterministic Quantum Dot Microlenses 8.4.1 Microlenses for Enhanced Photon Extraction 8.4.2 Description of Sample Templates and Spectroscopic Techniques 8.4.3 Device Yield and Photon-Extraction Efficiency 8.4.4 Verification of Single-Photon Emission 8.4.5 Generation of Indistinguishable Photons 8.4.6 Demonstration of a Twin-Photon Source 8.4.7 Generation of Polarization-Entangled Photon Pairs 8.4.8 Strain Tuning of the Emission Energy 8.4.9 Quantum Dot Single-Photon Sources Emitting at Telecom Wavelength 8.5 On-Chip Quantum Circuits with Deterministically-Integrated Quantum Dots 8.5.1 Fabrication of Monolithic Waveguide Structures and an On-Chip HBT Circuit 8.6 Conclusion and Outlook References 9 Quantum Networks Based on Single Photons 9.1 Introduction 9.2 Single-Photon Generation and Manipulation 9.2.1 Properties of Single Photons in Quantum Networks 9.2.2 Semiconductor Single-Photon Sources 9.3 Frequency Conversion of Quantum Light 9.3.1 Nonlinear Quantum-Optics 9.3.2 Conversion of Photons in the Telecom Band 9.3.3 Conversion of Photons from a Single Quantum Dot 9.4 Single-Photon Storage 9.4.1 Concepts of Photon Storage 9.4.2 Atomic Gas Cells 9.4.3 Interfacing Quantum Dots and Atomic Vapors 9.4.4 Single-Photon Storage 9.5 Quantum Communication 9.5.1 Quantum Key Distribution (QKD) Protocols 9.5.2 The Time-Frequency (TF-) Protocol 9.5.3 Numerical Studies, Higher Alphabets and Security Issues 9.6 Free-Space Quantum Link 9.6.1 Free Space QKD Transmission 9.6.2 Experimental Implementation of a Quantum Testbed 9.6.3 Evaluation and Improvements 9.7 Conclusion and Outlook References 10 Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration 10.1 Introduction 10.2 VCSEL Experimental Structures 10.3 VCSEL Processing, Geometric Variations, and Characterization 10.4 Reduced Vertical Dimension VCSELs 10.5 High Modulation Bandwidth VCSELs 10.6 VCSELs for Higher Power 10.7 VCSEL Arrays 10.8 Conclusion and Outlook References 11 VCSEL-Based Silicon Photonic Interconnect Technologies 11.1 Modern Interconnect Technologies and Requirements 11.1.1 Classification of Interconnects 11.1.2 Road to Coherent Data Center Interconnects 11.1.3 On the Importance of Quantum Dot Lasers for Silicon Photonics 11.2 Long-Wavelength VCSELs 11.2.1 Device Structure 11.2.2 Operation Characteristics 11.3 Characterization of 1.33 µm and 1.55 µm InP VCSELs for Coherent Interconnects 11.3.1 Intrinsic Linewidth 11.4 Modeling of VCSEL-Based Coherent Interconnects 11.4.1 Coherent Transmission Techniques 11.4.2 Digital Signal Processing 11.4.3 Performance of VCSEL-Based Transmission Links for QPSK 11.5 VCSEL-Based PAM-4 Transmission Link 11.5.1 Setup 11.5.2 System Performance 11.6 VCSEL-Based QPSK Transmission Link 11.6.1 Setup 11.6.2 System Performance 11.7 Conclusion References 12 Nitride Microcavities and Single Quantum Dots for Classical and Non-classical Light Emitters 12.1 Introduction 12.2 Bragg Mirrors in the Visible to Deep UV Spectral Region 12.3 Microstructure and Emission Properties of Blue/Violet Emitting III-Nitride Microcavities 12.3.1 Electric Fields Within AlGaN/AlInN DBRs 12.3.2 Plastic Relaxation of 62-Fold InGaN Multiple Quantum Wells in a GaN Cavity 12.3.3 Carrier Localization in a Pseudomorphically Grown InGaN MQW/DBR Structure 12.3.4 Local Properties of Excitonic and Photonic Modes in Violet Emitting Microcavities 12.4 GaN Quantum Dots: Formation, Optical and Electronic Properties 12.4.1 GaN Quantum Dot Formation Mechanism 12.4.2 Quantum Dot Emission from GaN Islands Formed at Threading Dislocations 12.4.3 Exciton-Phonon Coupling 12.4.4 Spectral Diffusion of Excitonic Complexes 12.4.5 Photon Statistics of the Biexciton Cascade 12.4.6 Unconventional Biexciton States 12.4.7 Monolithic Deep UV Bragg Mirrors for GaN QD Microcavities 12.5 Towards Electrically Driven Microcavity Devices 12.6 Conclusion and Perspectives References 13 Group III-Nitride-Based UV Laser Diodes 13.1 Introduction 13.2 State-of-the-Art in Group III-Nitride Laser Diode Technologies 13.2.1 Near UV and Blue Laser Diodes 13.2.2 Optically Pumped Deep UV Lasers 13.2.3 Electron Beam Pumping of UV Emitters 13.2.4 AlGaN-Based Deep UV Laser Diodes 13.3 Design of AlGaN-Based Deep UV Laser Diodes 13.3.1 Separate Confinement Heterostructure 13.3.2 Design Rules for Deep UV Laser Heterostructures 13.3.3 Investigated Deep UV Laser Structures 13.4 Fabrication of AlGaN-Based UV Laser Diodes 13.4.1 Low Resistance Ohmic Contacts to n-AlGaN Layer 13.5 Low Defect Density AlN Templates 13.5.1 Substrates and Templates for AlGaN UV Lasers 13.5.2 Bulk AlN Substrates 13.5.3 SiC Substrates 13.5.4 Sapphire Substrates 13.6 Growth of AlGaN Laser Heterostructures 13.6.1 Pseudomorphic Growth of AlGaN and Critical Layer Thickness 13.6.2 Si- and Mg-Doping of AlGaN Materials and Superlattices 13.6.3 Growth and Optical Properties of AlGaN Quantum Wells 13.7 Gain and Losses in Deep UV AlGaN Lasers by Optical Pumping 13.7.1 Optical Pumping for Lasing Threshold and Gain Measurements 13.7.2 Optical Gain in Dependence of the Emission Wavelength 13.7.3 Optical Polarization and Valence Band Ordering 13.7.4 Loss Mechanisms in Deep UV Lasers 13.8 Development of Current Injection Deep UV Laser Diodes 13.8.1 Low Resistance n-AlGaN Current Spreading Layers 13.8.2 Mg-Doped AlGaN Short Period Superlattices 13.8.3 Efficient Carrier Injection and Carrier Confinement in Deep UV AlGaN LDs by Electron Blocking Heterostructures 13.8.4 Efficient Carrier Injection in Deep UV AlGaN LD by Tunnel Heterojunctions 13.8.5 High Density Pulsed Current Injection in UV Laser Diodes 13.9 Conclusion and Outlook References Index