دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Zworski M.
سری: GSM138
ISBN (شابک) : 9780821883204
ناشر: AMS
سال نشر: 2012
تعداد صفحات: 446
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Semiclassical analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل نیمه کلاسیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای عالی و جامع برای تحلیل نیمه کلاسیک است. من معتقدم که به یک مرجع استاندارد برای موضوع تبدیل خواهد شد. --Alejandro Uribe، دانشگاه میشیگان تجزیه و تحلیل نیمه کلاسیک تکنیک های PDE را بر اساس مکاتبات کلاسیک کوانتومی (ذره-موج) ارائه می دهد. این تکنیک ها شامل ابزارهای معروفی مانند اپتیک هندسی و تقریب Wentzel-Kramers-Brillouin است. نمونه هایی از مسائل مورد مطالعه در این موضوع عبارتند از مجانبی ارزش ویژه انرژی بالا و دینامیک موثر برای حل معادلات تکامل. از نقطه نظر ریاضی، آنالیز نیمه کلاسیک شاخه ای از تحلیل میکرومحلی است که به طور کلی، تحلیل هارمونیک و هندسه سمپلتیک را برای مطالعه PDE خطی و غیرخطی به کار می برد. این کتاب در نظر گرفته شده است که متنی در سطح کارشناسی ارشد باشد که خوانندگان را با روش های نیمه کلاسیک و میکرومحلی در PDE آشنا می کند. در فصل های بعدی با بسیاری از موضوعات پیشرفته تخصصی که پیوندی به ادبیات تحقیق فعلی ارائه می دهد، افزوده شده است.
This book is an excellent, comprehensive introduction to semiclassical analysis. I believe it will become a standard reference for the subject. --Alejandro Uribe, University of Michigan Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel-Kramers-Brillouin approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics and effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE. The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics which provide a link to current research literature.
Cover S Title Semiclassical Analysis Copyright © 2012 by the American Mathematical Society ISBN 978-0-8218-8320-4 QC174.17.D54Z96 2012 515-dc23 LCCN 2012010649 Contents PREFACE Chapter 1 INTRODUCTION 1.1. BASIC THEMES 1.1.1. PDE with small parameters. 1.1.2. Basic techniques 1.1.3. Microlocal analysis 1.1.4. Other directions 1.2. CLASSICAL AND QUANTUM MECHANICS 1.2.1. Observables 1.2.2. Dynamics 1.3. OVERVIEW 1.4. NOTES Part 1 BASIC THEORY Chapter 2 SYMPLECTIC GEOMETRY AND ANALYSIS 2.1. FLOWS 2.2. SYMPLECTIC STRUCTURE ON R^2n 2.3. SYMPLECTIC MAPPINGS 2.4. HAMILTONIAN VECTOR FIELDS 2.5. LAGRANGIAN SUBMANIFOLDS 2.6. NOTES Chapter 3 FOURIER TRANSFORM, STATIONARY PHASE 3.1. FOURIER TRANSFORM ON S° 3.2. FOURIER TRANSFORM ON S' 3.3. SEMICLASSICAL FOURIER TRANSFORM 3.4. STATIONARY PHASE IN ONE DIMENSION 3.5. STATIONARY PHASE IN HIGHER DIMENSIONS 3.5.1. Quadratic phase function. 3.5.2. General phase function 3.5.3. Important Examples 3.6. OSCILLATORY INTEGRALS 3.7. NOTES Chapter 4 SEMICLASSICAL QUANTIZATION 4.1. DEFINITIONS 4.1.1. Quantization rules 4.1.2. Quantization on S and S' 4.2. QUANTIZATION FORMULAS 4.2.1. Symbols depending only on x. 4.2.2. Linear symbols 4.2.3. Commutators 4.2.4. Exponentials of linear symbols 4.2.5. Exponentials of quadratic symbols 4.2.6. Conjugation by Fourier transform 4.3. COMPOSITION, ASYMPTOTIC EXPANSIONS 4.3.1. Composing symbols 4.3.2. Asymptotics 4.3.3. Transforming between different quantizations 4.3.4. Standard quantization 4.4. SYMBOL CLASSES 4.4.1. Order functions and symbol classes 4.4.2. Asymptotic series 4.4.3. Quantization 4.4.4. Semiclassical expansions in So. 4.4.5. More useful formulas 4.5. OPERATORS ON L^2 4.5.1. Symbols in S 4.5.2. Symbols in S and S. 4.6. COMPACTNESS 4.7. INVERSES, GARDING INEQUALITIES 4.7.1. Inverses 4.7.2. Garding inequalities 4.8. NOTES Part 2 APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS Chapter 5 SEMICLASSICAL DEFECT MEASURES 5.1. CONSTRUCTION, EXAMPLES 5.2. DEFECT MEASURES AND PDE 5.2.1. Properties of semiclassical defect measures 5.3. DAMPED WAVE EQUATION 5.3.1. Quantization and semiclassical defect measures on the torus. 5.3.2. A damped wave equation 5.3.3. Resolvent estimates 5.3.4. Energy decay 5.4. NOTES Chapter 6 EIGENVALUES AND EIGENFUNCTIONS 6.1. THE HARMONIC OSCILLATOR 6.1.1. Eigenvalues and eigenfunctions of Po. 6.1.2. Higher dimensions, rescaling 6.1.3. Asymptotic distribution of eigenvalues 6.2. SYMBOLS AND EIGENFUNCTIONS 6.2.1. Concentration in phase space 6.2.2. Projections 6.3. SPECTRUM AND RESOLVENTS 6.4. WEYL'S LAW 6.5. NOTES Chapter 7 ESTIMATES FOR SOLUTIONS OF PDE 7.1. CLASSICALLY FORBIDDEN REGIONS 7.2. TUNNELING 7.3. ORDER OF VANISHING 7.4. L°° ESTIMATES FOR QUASIMODES 7.4.1. Quasimodes 7.4.2. Preliminary estimates 7.4.3. Nondegeneracy, localization, and L°° bounds 7.4.4. Bounds for spectral clusters 7.5. SCHAUDER ESTIMATES 7.5.1. Littlewood-Paley decomposition 7.5.2. Holder continuity 7.5.3. Schauder estimates 7.6. NOTES Part 3 ADVANCED THEORY AND APPLICATIONS Chapter 8 MORE ON THE SYMBOL CALCULUS 8.1. BEALS'S THEOREM 8.2. REAL EXPONENTIATION OF OPERATORS 8.3. GENERALIZED SOBOLEV SPACES 8.3.1. Sobolev spaces compatible with symbols 8.3.2. Application: Estimates for eigenfunctions 8.4. WAVEFRONT SETS, ESSENTIAL SUPPORT, AND MICROLOCALITY 8.4.1. Tempered functions and operators, localization 8.4.2. Semiclassical wavefront sets 8.4.3. Essential support 8.4.4. Wavefront sets of localized functions. 8.4.5. Microlocality. 8.5. NOTES Chapter 9 CHANGING VARIABLES 9.1. INVARIANCE, HALF-DENSITIES 9.1.1. Motivation, definitions 9.1.2. Operators on half-densities 9.1.3. Quantization and half-densities 9.2. CHANGING SYMBOLS 9.2.1. Changing variables and changing symbols 9.3. INVARIANT SYMBOL CLASSES 9.3.1. Classical symbols 9.3.2. Symbol calculus for S^m 9.3.3. Changing variables for S" 9.3.4. Sharp Garding inequality again 9.3.5. Beals's Theorem again 9.4. NOTES Chapter 10 FOURIER INTEGRAL OPERATORS 10.1. OPERATOR DYNAMICS 10.1.1. Symbols in S. 10.1.2. Time-independent, elliptic symbols 10.1.3. Time-dependent elliptic symbols 10.2. AN INTEGRAL REPRESENTATION FORMULA 10.2.1. A microlocal representation 10.2.2. Construction of the phase function. 10.2.3. Construction of the amplitude 10.3. STRICHARTZ ESTIMATES 10.3.1. Strichartz estimates. 10.4. L^p ESTIMATES FOR QUASIMODES 10.4.1. Nondegeneracy, localization, and Lp bounds 10.4.2. Bounds for spectral clusters 10.5. NOTES Chapter 11 QUANTUM AND CLASSICAL DYNAMICS 11.1. EGOROV'S THEOREM 11.2. QUANTIZING SYMPLECTIC MAPPINGS 11.2.1. More on symplectic matrices 11.2.2. Deformation of symplectomorphisms 11.2.3. Locally quantizing symplectomorphisms 11.2.4. Microlocal reformulation 11.3. QUANTIZING LINEAR SYMPLECTIC MAPPINGS 11.3.1. Quantizing J. 11.3.2. Quantizing linear symplectic mappings 11.3.3. An explicit formula 11.4. EGOROV'S THEOREM FOR LONGER TIMES 11.4.1. Estimates for flows. 11.4.2. Egorov's Theorem for long times 11.5. NOTES Chapter 12 NORMAL FORMS 12.1. OVERVIEW 12.2. NORMAL FORMS: REAL SYMBOLS 12.2.1. More symplectic geometry 12.2.2. Symbols of real principal type 12.2.3. L2 estimates and principal type 12.3. PROPAGATION OF SINGULARITIES 12.3.1. Propagation of wavefront sets 12.4. NORMAL FORMS: COMPLEX SYMBOLS 12.5. QUASIMODES, PSEUDOSPECTRA 12.5.1. Quasimodes and eigenvalues 12.5.2. Quasimodes for nonnormal operators 12.6. NOTES Chapter 13 THE FBI TRANSFORM 13.1. MOTIVATION 13.2. COMPLEX ANALYSIS 13.2.1. Complex differential forms. 13.2.2. Quadratic forms 13.2.3. Symplectic geometry 13.2.4. Plurisubharmonic functions 13.3. FBI TRANSFORMS AND BERGMAN KERNELS 13.4. QUANTIZATION AND TOEPLITZ OPERATORS 13.5. APPLICATIONS 13.5.1. Approximation by multiplication 13.5.2. Characterization of WFh 13.5.3. Sobolev spaces 13.5.4. Positive forms in several complex variables 13.6. NOTES Part 4 SEMICLASSICAL ANALYSIS ON MANIFOLDS Chapter 14 MANIFOLDS 14.1. DEFINITIONS, EXAMPLES 14.1.1. Manifolds 14.1.2. Vector bundles 14.1.3. Riemannian manifolds 14.2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS 14.2.1. Differential operators on manifolds 14.2.2. Pseudodifferential operators on manifolds. 14.2.3. Symbols of pseudodifferential operators 14.2.4. Properties of pseudodifferential operators on manifolds 14.2.5. Pseudodifferential operators and half-densities 14.2.6. PDE on manifolds 14.3. SCHRODINGER OPERATORS ON MANIFOLDS 14.3.1. Spectral theory 14.3.2. A functional calculus. 14.3.3. Trace class operators 14.3.4. Weyl's Law for compact manifolds 14.4. NOTES Chapter 15 QUANTUM ERGODICITY 15.1. CLASSICAL ERGODICITY 15.2. A WEAK EGOROV THEOREM 15.3. WEYL'S LAW GENERALIZED 15.4. QUANTUM ERGODIC THEOREMS 15.5. NOTES Part 5 APPENDICES Appendix A NOTATION A.1. BASIC NOTATION A.2. FUNCTIONS, DIFFERENTIATION A.3. OPERATORS A.4. ESTIMATES A.4.1. Use of constants. A.4.2. Order estimates A.5. SYMBOL CLASSES Appendix B DIFFERENTIAL FORMS B.1. DEFINITIONS B.2. PUSH-FORWARDS AND PULL-BACKS B.3. POINCARE'S LEMMA B.4. DIFFERENTIAL FORMS ON MANIFOLDS Appendix C FUNCTIONAL ANALYSIS C.1. OPERATOR THEORY C.1.1. Operators on distributions C.1.2. Operators and inverses C.2. SPECTRAL THEORY C.2.1. Spectral theory for bounded operators C.2.2. Spectral theory for unbounded operators. C.2.3. Minimax formulas C.3. TRACE CLASS OPERATORS Appendix D FREDHOLM THEORY D.1. GRUSHIN PROBLEMS D.2. FREDHOLM OPERATORS D.3. MEROMORPHIC CONTINUATION NOTES FOR THE APPENDICES Bibliography Index Back Cover