دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Dmitriy Tarkhov, T. V. Lazovskaya, Alexander Nikolayevich Vasilyev سری: ISBN (شابک) : 0128156511, 9780128156513 ناشر: Academic Pr سال نشر: 2019 تعداد صفحات: 320 [281] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Semi-empirical Neural Network Modeling and Digital Twins Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی شبکه عصبی نیمه تجربی و توسعه دوقلوهای دیجیتال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی نیمه تجربی شبکه عصبی یک رویکرد جدید در مورد چگونگی ساخت سریع یک راهحل شبکه عصبی چند لایه معادلات دیفرانسیل ارائه میکند. روشهای شبکههای عصبی فعلی دارای معایب قابلتوجهی هستند، از جمله فرآیند یادگیری طولانی و شبکههای عصبی تک لایه ساخته شده بر روی روش اجزای محدود (FEM). نقطه قوت روش جدید ارائه شده در این کتاب، گنجاندن خودکار پارامترهای وظیفه در فرمول حل نهایی است که نیاز به حل مکرر مسئله را بی نیاز می کند. این امر به ویژه برای ساخت مدل های فردی با ویژگی های منحصر به فرد مهم است. این کتاب مفاهیم کلیدی را از طریق تعداد زیادی از مشکلات خاص، هر دو مدل فرضی و علاقه عملی، نشان میدهد.
Semi-empirical Neural Network Modeling presents a new approach on how to quickly construct an accurate, multilayered neural network solution of differential equations. Current neural network methods have significant disadvantages, including a lengthy learning process and single-layered neural networks built on the finite element method (FEM). The strength of the new method presented in this book is the automatic inclusion of task parameters in the final solution formula, which eliminates the need for repeated problem-solving. This is especially important for constructing individual models with unique features. The book illustrates key concepts through a large number of specific problems, both hypothetical models and practical interest.
Cover SEMI-EMPIRICAL NEURAL NETWORK MODELING AND DIGITAL TWINS DEVELOPMENT Copyright About the authors Preface Acknowledgments Introduction References 1 Examples of problem statements and functionals Problems for ordinary differential equations A stiff differential equation The problem of a chemical reactor The problem of a porous catalyst Differential-algebraic problem Problems for partial differential equations for domains with fixed boundaries The Laplace equation on the plane and in space The Poisson problem The Schrödinger equation with a piecewise potential (quantum dot) The nonlinear Schrödinger equation Heat transfer in the vessel-tissue system Problems for partial differential equations in the case of the domain with variable borders Stefan problem Problem formulation The problem of the alternating pressure calibrator Problem statement Inverse and other ill-posed problems The inverse problem of migration flow modeling The problem of the recovery of solutions on the measurements for the Laplace equation The problem for the equation of thermal conductivity with time reversal The problem of determining the boundary condition The problem of continuation of the temperature field according to the measurement data Construction of a neural network model of a temperature field according to experimental data in the case of an interval sp ... The problem of air pollution in the tunnel The conclusion References Further reading 2 The choice of the functional basis (set of bases) Multilayer perceptron Structure and activation functions of multilayer perceptron The determination of the initial values of the weights of the perceptron Networks with radial basis functions-RBF The architecture of RBF networks Radial basis functions Asymmetric RBF-networks Multilayer perceptron and RBF-networks with time delays References 3 Methods for the selection of parameters and structure of the neural network model Structural algorithms Methods for specific tasks Methods of global non-linear optimization Methods in the generalized definition Methods of refinement of models of objects described by differential equations References Further reading 4 Results of computational experiments Solving problems for ordinary differential equations Stiff form of differential equation Chemical reactor problem The problem of a porous catalyst Differential-algebraic problem Solving problems for partial differential equations in domains with constant boundaries Solution of the Dirichlet problem for the Laplace equation in the unit circle Solving boundary value problems for the Laplace equation in the unit square The Laplace equation in the L-region The Poisson problem Schrödinger equation with a piecewise potential (quantum dot) Nonlinear Schrödinger equation Heat transfer in the tissue-vessels system Solving problems for partial differential equations for domains with variable boundaries Stefan problem The problem of the variable pressure calibrator Solving inverse and other ill-posed problems Comparison of neural network and classical approaches to the problem of identification of migration processes The problem of the recovery solutions of the Laplace equation on the measurements Problem for heat conduction equation with time reversal The problem of determining the boundary conditions The problem of continuing the temperature field according to measurement data Construction of a neural network model of a temperature field in the case of an interval specified thermal conductivity co ... The problem of air pollution in a tunnel References 5 Methods for constructing multilayer semi-empirical models General description of methods Explicit methods Implicit methods Partial differential equations Application of methods for constructing approximate analytical solutions for ordinary differential equations Comparison of methods on the example of elementary functions Results of computational experiments 1: The exponential function Error analysis Comparison with Maclaurin series with the same number of operations Results of computational experiments 2: The cosine function Error analysis Comparison with the Maclaurin series Search of period Stiff differential equation Mathieu equation Nonlinear pendulum equation Results of computational experiments for the segment [0;1] Results of computational experiments for the segment [0;4] The problem of modeling processes in the porous catalyst granule Multilayer methods for a model equation with delay Application of approximate multilayer methods for solving differential equations in the problem of stabilizing an inverted ... Application of multilayer methods for partial differential equations Heat equation Comparison of multilayer methods for solving the Cauchy problem for the wave equation Problems with real measurements The problem of sagging hemp rope Simulation of the load deflection of the real membrane Semi-empirical models of nonlinear bending of a cantilever beam References Index A B C D E F G H I J K L M N O P Q R S T V W Z Back Cover