دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Vishal Jain (editor), Jyotir Moy Chatterjee (editor), Ankita Bansal (editor), Abha Jain (editor) سری: ISBN (شابک) : 1119762294, 9781119762294 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Semantic Web for Effective Healthcare Systems: Impact and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب وب معنایی برای سیستم های مراقبت های بهداشتی موثر: تاثیر و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به تازگی، وب معنایی برای مقابله با این چالش ها محبوبیت زیادی به دست آورده است. فنآوریهای وب معنایی این فرصت را دارند که روشی را که ارائه دهندگان مراقبتهای بهداشتی از فناوری برای به دست آوردن بینش و دانش از دادههای خود و تصمیمگیری استفاده میکنند، تغییر دهند. هم فناوریهای کلان داده و هم فناوریهای وب معنایی میتوانند مکمل یکدیگر باشند تا به چالشها رسیدگی کنند و به سیستمهای مدیریت مراقبتهای بهداشتی هوشمند بیفزایند.
هدف این کتاب تحلیل وضعیت فعلی در مورد نحوه استفاده از وب معنایی برای حل مشکلات است. مشکل یکپارچهسازی دادههای سلامت و قابلیت همکاری، نحوه ارائه قابلیتهای پیشرفته پیوند دادهها که میتواند جستجو و بازیابی دادههای پزشکی را بهبود بخشد. فصلهایی در کتاب وجود دارد که ابزارها و رویکردهای تحلیل دادههای سلامت معنایی و کشف دانش را تحلیل میکند. این کتاب نقش فناوری های معنایی را در استخراج و تبدیل داده های مراقبت های بهداشتی قبل از ذخیره آن ها در مخازن مورد بحث قرار می دهد. همچنین رویکردهای مختلف برای ادغام داده های ناهمگن مراقبت های بهداشتی را مورد بحث قرار می دهد. به طور خلاصه، این کتاب به خوانندگان کمک می کند تا مفاهیم کلیدی در برنامه های کاربردی وب معنایی برای مهندسی زیست پزشکی و مراقبت های بهداشتی را درک کنند.
Recently, the Semantic Web has gained huge popularity to address these challenges. Semantic web technologies have the opportunity to transform the way healthcare providers utilize technology to gain insights and knowledge from their data and make decisions. Both big data and semantic web technologies can complement each other to address the challenges and add intelligence to healthcare management systems.
The aim of this book is to analyze the current status on how Semantic Web is used to solve the health data integration and interoperability problem, how it provides advanced data linking capabilities that can improve search and retrieval of medical data. There are chapters in the book which analyze the tools and approaches to semantic health data analysis and knowledge discovery. The book discusses the role of semantic technologies in extracting and transforming healthcare data before storing it in repositories. It also discusses different approaches for integrating heterogeneous healthcare data. To summarize, the book will help readers understand key concepts in semantic web applications for biomedical engineering and healthcare.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface Acknowledgment 1 An Ontology-Based Contextual Data Modeling for Process Improvement in Healthcare 1.1 Introduction 1.1.1 Ontology-Based Information Extraction 1.1.2 Ontology-Based Knowledge Representation 1.2 Related Work 1.3 Motivation 1.4 Feature Extraction 1.4.1 Vector Space Model 1.4.2 Latent Semantic Indexing (LSI) 1.4.3 Clustering Techniques 1.4.4 Topic Modeling p(w|d) 1.5 Ontology Development 1.5.1 Ontology-Based Semantic Indexing (OnSI) Model 1.5.2 Ontology Development 1.5.3 OnSI Model Evaluation 1.5.4 Metrics Analysis 1.6 Dataset Description 1.7 Results and Discussions 1.7.1 Discussion 1 1.7.2 Discussion 2 1.7.3 Discussion 3 1.8 Applications 1.9 Conclusion 1.10 Future Work References 2 Semantic Web for Effective Healthcare Systems: Impact and Challenges 2.1 Introduction 2.2 Overview of the Website in Healthcare 2.2.1 What Is Website? 2.2.2 Types of Website 2.2.2.1 Static Website 2.2.2.2 Dynamic Website 2.2.3 What Is Semantic Web? 2.2.4 Role of Semantic Web 2.2.4.1 Pros and Cons of Semantic Web 2.2.4.2 Impact on Patient 2.2.4.3 Impact on Practitioner 2.2.4.4 Impact on Researchers 2.3 Data and Database 2.3.1 What Is Data? 2.3.2 What Is Database? 2.3.3 Source of Data in the Healthcare System 2.3.3.1 Electronic Health Record (EHR) 2.3.3.2 Biomedical Image Analysis 2.3.3.3 Sensor Data Analysis 2.3.3.4 Genomic Data Analysis 2.3.3.5 Clinical Text Mining 2.3.3.6 Social Media 2.3.4 Why Are Databases Important? 2.3.5 Challenges With the Database in the Healthcare System 2.4 Big Data and Database Security and Protection 2.4.1 What Is Big Data 2.4.2 Five V’s of Big Data 2.4.2.1 Volume 2.4.2.2 Variety 2.4.2.3 Velocity 2.4.2.4 Veracity 2.4.2.5 Value 2.4.3 Architectural Framework of Big Data 2.4.4 Data Protection Versus Data Security in Healthcare 2.4.4.1 Phishing Attacks 2.4.4.2 Malware and Ransomware 2.4.4.3 Cloud Threats 2.4.5 Technology in Use to Secure the Healthcare Data 2.4.5.1 Access Control Policy 2.4.6 Monitoring and Auditing 2.4.7 Standard for Data Protection 2.4.7.1 Healthcare Standard in India 2.4.7.2 Security Technical Standards 2.4.7.3 Administrative Safeguards Standards 2.4.7.4 Physical Safeguard Standards References 3 Ontology-Based System for Patient Monitoring 3.1 Introduction 3.1.1 Basics of Ontology 3.1.2 Need of Ontology in Patient Monitoring 3.2 Literature Review 3.2.1 Uses of Ontology in Various Domains 3.2.2 Ontology in Patient Monitoring System 3.3 Architectural Design 3.3.1 Phases of Patient Monitoring System 3.3.2 Reasoner in Patient Monitoring 3.4 Experimental Results 3.4.1 SPARQL Results 3.4.2 Comparison Between Other Systems 3.5 Conclusion and Future Enhancements References 4 Semantic Web Solutions for Improvised Search in Healthcare Systems 4.1 Introduction 4.1.1 Key Benefits and Usage of Technology in Healthcare System 4.2 Background 4.2.1 Significance of Semantics in Healthcare Systems 4.2.2 Scope and Benefits of Semantics in Healthcare Systems 4.2.3 Issues in Incorporating Semantics 4.2.4 Existing Semantic Web Technologies 4.3 Searching Techniques in Healthcare Systems 4.3.1 Keyword-Based Search 4.3.2 Controlled Vocabularies Based Search 4.3.3 Improvising Searches With Semantic Web Solutions 4.3.4 Health Domain-Specific Resources for Semantic Search 4.3.4.1 Ontologies 4.3.4.2 Libraries 4.3.4.3 Search Engines 4.4 Emerging Technologies/Resources in Health Sector 4.4.1 Elasticsearch 4.4.2 BioBERT 4.4.3 Knowledge Graphs 4.5 Conclusion References 5 Actionable Content Discovery for Healthcare 5.1 Introduction 5.2 Actionable Content 5.2.1 Actionable Content in Theory 5.2.2 Actionable Content in Practice 5.3 Health Analytics 5.3.1 Artificial Intelligence/Machine Learning-Based Predictive Analytics 5.3.2 Semantic Technology for Prescriptive Health Analytics 5.4 Ontologies and Actionable Content 5.4.1 Ontologies in Healthcare Domain 5.5 General Architecture for the Discovery of Actionable Content for Healthcare Domain 5.5.1 Ontology-Driven Actionable Content Discovery in Healthcare Domain 5.5.2 Case Study for Actionable Content Discovery in Cancer Domain 5.6 Conclusion References 6 Intelligent Agent System Using Medicine Ontology 6.1 Introduction to Semantic Search 6.1.1 What Is an Ontology in Terms of Medicine? 6.1.2 Needs and Benefits of Ontology in Medical Search 6.2 Sematic Search 6.2.1 How NLP Works in Sematic Search? 6.2.2 Part of Speech Tagging and Chunking 6.2.3 Sentence Parsing 6.2.4 Discussion About the Various Semantic Search in Medical Databases 6.2.5 Discussion About the Retrieval Tools Used in Sematic Search in Medline 6.3 Structural Pattern of Semantic Search 6.3.1 Architectural Diagram 6.3.2 Agent Ontology 6.3.3 Rule-Based Approach 6.3.4 Reasoners-Based Approach SVM-Based Approach 6.4 Implementation of Reasoners 6.5 Implementation and Results 6.6 Conclusion and Future Prospective References 7 Ontology-Based System for Robotic Surgery—A Historical Analysis 7.1 Historical Discourse of Surgical Robots 7.2 The Necessity for Surgical Robots 7.3 Ontological Evolution of Robotic Surgical Procedures in Various Domains 7.4 Inferences Drawn From the Table 7.5 Transoral Robotic Surgery 7.6 Pancreatoduodenectomy 7.7 Robotic Mitral Valve Surgery 7.8 Rectal Tumor Surgery 7.9 Robotic Lung Cancer Surgery 7.10 Robotic Surgery in Gynecology 7.11 Robotic Radical Prostatectomy 7.12 Conclusion 7.13 Future Work References 8 IoT-Enabled Effective Healthcare Monitoring System Using Semantic Web 8.1 Introduction 8.2 Literature Review 8.3 Phases of IoT-Based Healthcare 8.4 IoT-Based Healthcare Architecture 8.5 IoT-Based Sensors for Health Monitoring 8.6 IoT Applications in Healthcare 8.7 Semantic Web, Ontology, and Its Usage in Healthcare Sector 8.8 Semantic Web-Based IoT Healthcare 8.9 Challenges of IoT in Healthcare Industry 8.10 Conclusion References 9 Precision Medicine in the Context of Ontology 9.1 Introduction 9.2 The Rationale Behind Data 9.3 Data Standards for Interoperability 9.4 The Evolution of Ontology 9.5 Ontologies and Classifying Disorders 9.6 Phenotypic Ontology of Humans in Rare Disorders 9.7 Annotations and Ontology Integration 9.8 Precision Annotation and Integration 9.9 Ontology in the Contexts of Gene Identification Research 9.10 Personalizing Care for Chronic Illness 9.11 Roadblocks Toward Precision Medicine 9.12 Future Perspectives 9.13 Conclusion References 10 A Knowledgebase Model Using RDF Knowledge Graph for Clinical Decision Support Systems 10.1 Introduction 10.2 Relational Database to Graph Database 10.2.1 Relational Database for Knowledge Representation 10.2.2 NoSQL Databases 10.2.3 Graph Database 10.3 RDF 10.3.1 RDF Model and Technology 10.3.2 Metadata and URI 10.3.3 RDF Stores 10.4 Knowledgebase Systems and Knowledge Graphs 10.4.1 Knowledgebase Systems 10.4.2 Knowledge Graphs 10.4.3 RDF Knowledge Graphs 10.4.4 Information Retrieval Using SPARQL 10.5 Knowledge Base for CDSS 10.5.1 Curation of Knowledge Base for CDSS 10.5.2 Proposed Model for Curation 10.5.3 Evaluation Methodology 10.6 Discussion for Further Research and Development 10.7 Conclusion References 11 Medical Data Supervised Learning Ontologies for Accurate Data Analysis 11.1 Introduction 11.2 Ontology of Biomedicine 11.2.1 Ontology Resource Open Sharing 11.3 Supervised Learning 11.4 AQ21 Rule in Machine Learning 11.5 Unified Medical Systems 11.5.1 Note of Relevance to Bioinformatic Experts 11.5.2 Terminological Incorporation Principles 11.5.3 Cross-References External 11.5.4 UMLS Data Access 11.6 Performance Analysis 11.7 Conclusion References 12 Rare Disease Diagnosis as Information Retrieval Task 12.1 Introduction 12.2 Definition 12.3 Characteristics of Rare Diseases (RDs) 12.4 Types of Rare Diseases 12.4.1 Genetic Causes 12.4.2 Non-Genetic Causes 12.4.3 Pathogenic Causes (Infectious Agents) 12.4.4 Toxic Agents 12.4.5 Other Causes 12.5 A Brief Classification 12.6 Rare Disease Databases and Online Resources 12.6.1 European Reference Network: ERN 12.6.2 Genetic and Rare Diseases Information Center: GARD 12.6.3 International Classification of Diseases, 10th Revision: ICD-10 12.6.4 Orphanet-INSERM (Institut National de la Santé et de la Recherche Médicale) 12.6.5 Medical Dictionary for Regulatory Activities: MedDRA 12.6.6 Medical Subject Headings: MeSH 12.6.7 Online Mendelian Inheritance in Man: OMIM 12.6.8 Orphanet Rare Disease Ontology: ORDO 12.6.9 UMLS: Unified Medical Language System 12.6.10 SNOMED-CT: Systematized Nomenclature of Human and Veterinary Medicine—Clinical Terms 12.7 Information Retrieval of Rare Diseases Through a Web Search and Other Methods 12.7.1 What Is Information Retrieval (IR)? 12.7.2 Listed Below Are Some of the Methods for Information Retrieval 12.7.2.1 Web Search for a Diagnosis 12.7.2.2 Cause of Diagnostic Errors in Web-Based Tools 12.7.2.3 Nonprofessional Use of Web Tool for Diagnosis 12.7.2.4 Performance of Web Search Tools 12.7.2.5 Design of Watson 12.8 Tips and Tricks for Information Retrieval 12.9 Research on Rare Disease Throughout the World 12.10 Conclusion References 13 Atypical Point of View on Semantic Computing in Healthcare 13.1 Introduction 13.2 Mind the Language 13.2.1 Why Words Matter 13.2.2 What Words Matter 13.2.3 How Words Matter 13.3 Semantic Analytics and Cognitive Computing: Recent Trends 13.3.1 Semantic Data Analysis 13.3.2 Semantic Data Integration 13.3.3 Semantic Applications 13.4 Semantics-Powered Healthcare SOS Engineering 13.5 Conclusion References 14 Using Artificial Intelligence to Help COVID-19 Patients 14.1 Introduction 14.2 Method 14.3 Results 14.4 Discussion 14.4.1 What is the Use of AI in Healthcare? 14.4.2 How to Use AI for Critical Care Units 14.4.2.1 Input Stage 14.4.2.2 Process Stage 14.4.2.3 Output Stage 14.5 Conclusion Acknowledgment References Index EULA