ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration

دانلود کتاب اتصالات نوری یکپارچه سه بعدی خود سازماندهی شده: با یکپارچگی ناهمگن تمام فتوسنگی

Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration

مشخصات کتاب

Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9814877042, 9789814877046 
ناشر: Jenny Stanford Publishing 
سال نشر: 2021 
تعداد صفحات: 381 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اتصالات نوری یکپارچه سه بعدی خود سازماندهی شده: با یکپارچگی ناهمگن تمام فتوسنگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Chapter 1: Introduction
Chapter 2: Guidelines toward Self-Organized 3D Integrated Optical Interconnects
	2.1: Advantages of Lightwave Implementation into Boxes of Computers
	2.2: Integrated Optical Interconnects
	2.3: Self-Organization of 3D Integrated Optical
Interconnects
	2.4: E-O and O-E Signal Conversion in Integrated Optical
Interconnects
	2.5: Core Technologies for Self-Organized 3D Integrated
Optical Interconnects
Chapter 3: Scalable Film Optical Link Modules
	3.1: Concept of S-FOLM
	3.2: 3D Integrated Optical Interconnects Built by S-FOLMs
		3.2.1: 3D OE Platforms
		3.2.2: Structures within Boxes of Computers
	3.3: Various OE Structures Built by S-FOLMs
		3.3.1: OE-Film/Electrical Substrate Stack
		3.3.2: OE-Film/OE-Film Stack and Backside
Connection
		3.3.3: Both-Side Mounting
		3.3.4: Micro Optical Link Module
		3.3.5: OE Tap Guide
		3.3.6: WDM Transceiver and WDM Inter-PCB Connect
		3.3.7: 3D Optical Circuits for WDM
	3.4: Optoelectronic Amplifier/Driver-Less Substrate
		3.4.1: Concept of OE-ADLES
		3.4.2: Power Dissipation and RC Delay in OE-ADLES
Chapter 4: Optical Waveguide Films with Vertical Mirrors and 3D Optical Circuits
	4.1: Built-In Mask Method
	4.2: Fabrication of Optical Waveguides and Vertical Mirrors
		4.2.1: Waveguide Cores
		4.2.2: Vertical Mirrors
	4.3: Vertical Mirrors with Multi-Core-Layer Skirt-Type Structures
		4.3.1: Observation of Beam Leakage and Scattering at Vertical Mirrors
		4.3.2: Three-Core-Layer Skirt-Type Vertical Mirrors
		4.3.3: Simulations of Beam Leakage/Scattering at Vertical Mirrors
		4.3.4: Fabrication of Multi-Core-Layer Skirt-Type Vertical Mirrors
	4.4: 3D Optical Circuits
		4.4.1: Structures
		4.4.2: Type I: Stacked Waveguide Films with Vertical Mirrors
			4.4.2.1: Demonstration of 3D optical wiring
			4.4.2.2: Loss measurements
			4.4.2.3: Loss at Optical Z-Connection
		4.4.3: Type II: Waveguide Films with Vertical Waveguides
	4.5: Optical Waveguide Films Stacked on Electrical Boards
		4.5.1: Process Flow
		4.5.2: Waveguide-Film Stacking on PCBs
	4.6: Nanoscale Waveguides Made of PRI Sol–Gel Thin Films
		4.6.1: Linear, Bending, and Branching Waveguides
			4.6.1.1: Fabrication processes
			4.6.1.2: Linear waveguides
			4.6.1.3: Bending and branching waveguides
		4.6.2: Vertical Mirrors and All-Air-Cladding Waveguides
Chapter 5: Resource-Saving All-Photolithographic Heterogeneous Integration: PL-Pack with SORT
	5.1: Advantages of PL-Pack with SORT over Conventional Packaging
	5.2: PL-Pack with SORT
		5.2.1: Whole Process Flow of PL-Pack with SORT
		5.2.2: Process Flow of SORT
	5.3: Impacts of PL-Pack with SORT
		5.3.1: Material Consumption and Costs
		5.3.2: Mechanical Properties
		5.3.3: Transfer Step Count
		5.3.4: Small/Thin-Die Placement Density
	5.4: SORT of Polymer Waveguide Lenses
	5.5: SORT of Waveguide Cores
		5.5.1: SORT Process for Optical Waveguides
		5.5.2: Experimental Demonstration of SORT for Optical Waveguides
	5.6: Light-Assisted SORT
		5.6.1: LA-SORT
		5.6.2: Experimental Demonstration of LA-SORT
	5.7: SORT for Nanoscale Heterogeneous Integration
Chapter 6: High-Speed/Small-Size Light Modulators and Optical Switches
	6.1: Classification of Light Modulators and Optical Switches
	6.2: Variable Well Optical ICs and Waveguide Prism Deflectors
	6.3: Design and Predicted Performance of WPDs
		6.3.1: EO Materials for WPDs
		6.3.2: Model for 2 × 2 WPD Optical Switch
			6.3.2.1: Preliminary model
			6.3.2.2: Optimized model for performance evaluation
		6.3.3: Predicted Performance
	6.4: Advanced WPDs
		6.4.1: WPD Optical Switches with ADD Functions
		6.4.2: WPD Optical Switches with MUX/DEMUX Functions
	6.5: Transient Responses in Microring Resonators and Photonic Crystals
Chapter 7: Self-Organized Lightwave Networks
	7.1: Concept of SOLNETs
		7.1.1: Types of SOLNETs
		7.1.2: PRI Materials
		7.1.3: One-Photon and Two-Photon SOLNETs
		7.1.4: Fabrication Processes of Luminescent Targets and Luminescent Regions
	7.2: Performance of SOLNETs Predicted by Computer Simulations
		7.2.1: Simulation Models
		7.2.2: Simulation Procedures
		7.2.3: SOLNETs between Nanoscale Waveguides
			7.2.3.1: TB-SOLNET/P-SOLNET
			7.2.3.2: R-SOLNET
			7.2.3.3: LA-SOLNET
			7.2.3.4: Performance of couplings
		7.2.4: SOLNETs between Microscale and Nanoscale Waveguides
			7.2.4.1: TB-SOLNET/P-SOLNET
			7.2.4.2: R-SOLNET
			7.2.4.3: LA-SOLNET
			7.2.4.4: Performance of couplings
	7.3: Experimental Demonstrations of One-Photon SOLNETs
		7.3.1: One-Photon TB-SOLNETs
		7.3.2: One-Photon R-SOLNETs with Micromirrors Formed by Free-Space Write Beams
		7.3.3: One-Photon R-SOLNETs with Micromirrors
		7.3.4: One-Photon R-SOLNETs with Reflective Objects
		7.3.5: One-Photon R-SOLNETs with Luminescent Targets
			7.3.5.1: Coumarin 481 luminescent targets
			7.3.5.2: Alq3 luminescent targets
	7.4: Experimental Demonstrations of Two-Photon SOLNETs
		7.4.1: Two-Photon TB-SOLNETs
		7.4.2: Two-Photon R-SOLNETs
Chapter 8: Self-Organized 3D Integrated Optical Interconnects: Model Proposals
	8.1: 3D Integrated Optical Interconnects with P- and R-SOLNETs
	8.2: 3D Integrated Optical Interconnects with LA- and R-SOLNETs
Chapter 9: Self-Organized 3D Micro Optical Switching Systems: Model Proposals and Predicted Performance
	9.1: Advantages of 3D-MOSS
	9.2: Architecture of 3D-MOSS
		9.2.1: 3D-MOSS
		9.2.2: 3D-MOSS with SOLNET Implementation
	9.3: Predicted Performance of 1024 × 1024 3D-MOSS
		9.3.1: Structural Model
		9.3.2: Insertion Loss
		9.3.3: Electrical Characteristics
		9.3.4: Impact of HIC Waveguide Implementation into 3D-MOSS
Chapter 10: Film-Based Integrated Solar Energy Conversion Systems
	10.1: Integrated Solar Films
	10.2: Waveguide-Type Thin-Film Solar Cells
	10.3: Key Fabrication Processes for Integrated Solar Films
	10.4: Multilayer Waveguide-Type Light Beam Collecting Films
		10.4.1: Simulation Procedure
		10.4.2: Light Beam Collection by Light Beam Collecting Films
		10.4.3: Overall Consideration for Light Beam Collecting Efficiency
	10.5: Thin-Film Artificial Photosynthesis Cells
Chapter 11: Embodiments Disclosed in Patents
	11.1: Integrated OE MCMs
	11.2: 3D Optical Interconnects
		11.2.1: Horizontal Layer Attachment
		11.2.2: Vertical Layer Attachment
	11.3: Micro Optical Link Modules
	11.4: Active Optical Sheets, Boards, and Connectors
Chapter 12: Future Challenges
	12.1: Enhancement of the Pockels Effect by Controlling Wavefunction Shapes
	12.2: Molecular Layer Deposition (MLD)
	12.3: Growth of Polymer MQDs by MLD
Epilogue
Index




نظرات کاربران