دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Tetsuzo Yoshimura
سری:
ISBN (شابک) : 9814877042, 9789814877046
ناشر: Jenny Stanford Publishing
سال نشر: 2021
تعداد صفحات: 381
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 50 مگابایت
در صورت تبدیل فایل کتاب Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتصالات نوری یکپارچه سه بعدی خود سازماندهی شده: با یکپارچگی ناهمگن تمام فتوسنگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Chapter 1: Introduction Chapter 2: Guidelines toward Self-Organized 3D Integrated Optical Interconnects 2.1: Advantages of Lightwave Implementation into Boxes of Computers 2.2: Integrated Optical Interconnects 2.3: Self-Organization of 3D Integrated Optical Interconnects 2.4: E-O and O-E Signal Conversion in Integrated Optical Interconnects 2.5: Core Technologies for Self-Organized 3D Integrated Optical Interconnects Chapter 3: Scalable Film Optical Link Modules 3.1: Concept of S-FOLM 3.2: 3D Integrated Optical Interconnects Built by S-FOLMs 3.2.1: 3D OE Platforms 3.2.2: Structures within Boxes of Computers 3.3: Various OE Structures Built by S-FOLMs 3.3.1: OE-Film/Electrical Substrate Stack 3.3.2: OE-Film/OE-Film Stack and Backside Connection 3.3.3: Both-Side Mounting 3.3.4: Micro Optical Link Module 3.3.5: OE Tap Guide 3.3.6: WDM Transceiver and WDM Inter-PCB Connect 3.3.7: 3D Optical Circuits for WDM 3.4: Optoelectronic Amplifier/Driver-Less Substrate 3.4.1: Concept of OE-ADLES 3.4.2: Power Dissipation and RC Delay in OE-ADLES Chapter 4: Optical Waveguide Films with Vertical Mirrors and 3D Optical Circuits 4.1: Built-In Mask Method 4.2: Fabrication of Optical Waveguides and Vertical Mirrors 4.2.1: Waveguide Cores 4.2.2: Vertical Mirrors 4.3: Vertical Mirrors with Multi-Core-Layer Skirt-Type Structures 4.3.1: Observation of Beam Leakage and Scattering at Vertical Mirrors 4.3.2: Three-Core-Layer Skirt-Type Vertical Mirrors 4.3.3: Simulations of Beam Leakage/Scattering at Vertical Mirrors 4.3.4: Fabrication of Multi-Core-Layer Skirt-Type Vertical Mirrors 4.4: 3D Optical Circuits 4.4.1: Structures 4.4.2: Type I: Stacked Waveguide Films with Vertical Mirrors 4.4.2.1: Demonstration of 3D optical wiring 4.4.2.2: Loss measurements 4.4.2.3: Loss at Optical Z-Connection 4.4.3: Type II: Waveguide Films with Vertical Waveguides 4.5: Optical Waveguide Films Stacked on Electrical Boards 4.5.1: Process Flow 4.5.2: Waveguide-Film Stacking on PCBs 4.6: Nanoscale Waveguides Made of PRI Sol–Gel Thin Films 4.6.1: Linear, Bending, and Branching Waveguides 4.6.1.1: Fabrication processes 4.6.1.2: Linear waveguides 4.6.1.3: Bending and branching waveguides 4.6.2: Vertical Mirrors and All-Air-Cladding Waveguides Chapter 5: Resource-Saving All-Photolithographic Heterogeneous Integration: PL-Pack with SORT 5.1: Advantages of PL-Pack with SORT over Conventional Packaging 5.2: PL-Pack with SORT 5.2.1: Whole Process Flow of PL-Pack with SORT 5.2.2: Process Flow of SORT 5.3: Impacts of PL-Pack with SORT 5.3.1: Material Consumption and Costs 5.3.2: Mechanical Properties 5.3.3: Transfer Step Count 5.3.4: Small/Thin-Die Placement Density 5.4: SORT of Polymer Waveguide Lenses 5.5: SORT of Waveguide Cores 5.5.1: SORT Process for Optical Waveguides 5.5.2: Experimental Demonstration of SORT for Optical Waveguides 5.6: Light-Assisted SORT 5.6.1: LA-SORT 5.6.2: Experimental Demonstration of LA-SORT 5.7: SORT for Nanoscale Heterogeneous Integration Chapter 6: High-Speed/Small-Size Light Modulators and Optical Switches 6.1: Classification of Light Modulators and Optical Switches 6.2: Variable Well Optical ICs and Waveguide Prism Deflectors 6.3: Design and Predicted Performance of WPDs 6.3.1: EO Materials for WPDs 6.3.2: Model for 2 × 2 WPD Optical Switch 6.3.2.1: Preliminary model 6.3.2.2: Optimized model for performance evaluation 6.3.3: Predicted Performance 6.4: Advanced WPDs 6.4.1: WPD Optical Switches with ADD Functions 6.4.2: WPD Optical Switches with MUX/DEMUX Functions 6.5: Transient Responses in Microring Resonators and Photonic Crystals Chapter 7: Self-Organized Lightwave Networks 7.1: Concept of SOLNETs 7.1.1: Types of SOLNETs 7.1.2: PRI Materials 7.1.3: One-Photon and Two-Photon SOLNETs 7.1.4: Fabrication Processes of Luminescent Targets and Luminescent Regions 7.2: Performance of SOLNETs Predicted by Computer Simulations 7.2.1: Simulation Models 7.2.2: Simulation Procedures 7.2.3: SOLNETs between Nanoscale Waveguides 7.2.3.1: TB-SOLNET/P-SOLNET 7.2.3.2: R-SOLNET 7.2.3.3: LA-SOLNET 7.2.3.4: Performance of couplings 7.2.4: SOLNETs between Microscale and Nanoscale Waveguides 7.2.4.1: TB-SOLNET/P-SOLNET 7.2.4.2: R-SOLNET 7.2.4.3: LA-SOLNET 7.2.4.4: Performance of couplings 7.3: Experimental Demonstrations of One-Photon SOLNETs 7.3.1: One-Photon TB-SOLNETs 7.3.2: One-Photon R-SOLNETs with Micromirrors Formed by Free-Space Write Beams 7.3.3: One-Photon R-SOLNETs with Micromirrors 7.3.4: One-Photon R-SOLNETs with Reflective Objects 7.3.5: One-Photon R-SOLNETs with Luminescent Targets 7.3.5.1: Coumarin 481 luminescent targets 7.3.5.2: Alq3 luminescent targets 7.4: Experimental Demonstrations of Two-Photon SOLNETs 7.4.1: Two-Photon TB-SOLNETs 7.4.2: Two-Photon R-SOLNETs Chapter 8: Self-Organized 3D Integrated Optical Interconnects: Model Proposals 8.1: 3D Integrated Optical Interconnects with P- and R-SOLNETs 8.2: 3D Integrated Optical Interconnects with LA- and R-SOLNETs Chapter 9: Self-Organized 3D Micro Optical Switching Systems: Model Proposals and Predicted Performance 9.1: Advantages of 3D-MOSS 9.2: Architecture of 3D-MOSS 9.2.1: 3D-MOSS 9.2.2: 3D-MOSS with SOLNET Implementation 9.3: Predicted Performance of 1024 × 1024 3D-MOSS 9.3.1: Structural Model 9.3.2: Insertion Loss 9.3.3: Electrical Characteristics 9.3.4: Impact of HIC Waveguide Implementation into 3D-MOSS Chapter 10: Film-Based Integrated Solar Energy Conversion Systems 10.1: Integrated Solar Films 10.2: Waveguide-Type Thin-Film Solar Cells 10.3: Key Fabrication Processes for Integrated Solar Films 10.4: Multilayer Waveguide-Type Light Beam Collecting Films 10.4.1: Simulation Procedure 10.4.2: Light Beam Collection by Light Beam Collecting Films 10.4.3: Overall Consideration for Light Beam Collecting Efficiency 10.5: Thin-Film Artificial Photosynthesis Cells Chapter 11: Embodiments Disclosed in Patents 11.1: Integrated OE MCMs 11.2: 3D Optical Interconnects 11.2.1: Horizontal Layer Attachment 11.2.2: Vertical Layer Attachment 11.3: Micro Optical Link Modules 11.4: Active Optical Sheets, Boards, and Connectors Chapter 12: Future Challenges 12.1: Enhancement of the Pockels Effect by Controlling Wavefunction Shapes 12.2: Molecular Layer Deposition (MLD) 12.3: Growth of Polymer MQDs by MLD Epilogue Index