دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anne Dambricourt Malassé
سری: Evolutionary Biology – New Perspectives on Its Development, 5
ISBN (شابک) : 3031047826, 9783031047824
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 392
[393]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Self-Organization as a New Paradigm in Evolutionary Biology: From Theory to Applied Cases in the Tree of Life به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خودسازماندهی به عنوان پارادایم جدید در زیست شناسی تکاملی: از نظریه تا موارد کاربردی در درخت زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ترکیب معرفتشناختی نظریههای مختلف تکامل، از اولین فرمولبندی در سال 1802 با انتقال شخصیتهای موروثی توسط جی بی لامارک، نیاز به سنتز جایگزینی برای سنتز پرینستون (1947) را نشان میدهد. این ترکیب جدید مدلهای علمی خودسازماندهی را که در نیمه دوم قرن بیستم بر اساس قوانین فیزیک، ترمودینامیک و ریاضیات توسعه یافتهاند، با مسائل تکاملی نوظهور مانند حافظه خود سازمانیافته ادغام میکند.
این کتاب نشان می دهد که چگونه خودسازماندهی در زیست
شناسی تکاملی مدرن ادغام شده است. این کتاب به دو بخش تقسیم
میشود: بخش اول به مشاهدات مدرن در دیرینهشناسی و زیستشناسی
میپردازد که شامل نظریهپردازان اصلی خودسازماندهی (d’Arcy
Thompson، Henri Bergson، René Thom، Ilya Prigogine) میشود.
بخش دوم مدلهای تکاملی نوظهور مختلف از جمله علوم پیچیدگی،
سیستمهای دینامیکی غیرخطی، فراکتالها، جاذبهها، اپیژنز،
سیستمیک و مزولوژی را با نمونههای مختلفی از علوم پیچیدگی و
خود سازماندهی که در تبار انسانی مشاهده شده است، ارائه
میکند. از هر دو دیدگاه داخلی (جنین زایی-مورفوژنز) و خارجی
(مزولوژی).
The epistemological synthesis of the various theories of evolution, since the first formulation in 1802 with the transmission of the inherited characters by J.B. Lamarck, shows the need for an alternative synthesis to that of Princeton (1947). This new synthesis integrates the scientific models of self-organization developed during the second half of the 20th century based on the laws of physics, thermodynamics, and mathematics with the emergent evolutionary problematics such as self-organized memory.
This book shows, how self-organization is integrated in
modern evolutionary biology. It is divided in two parts: The
first part pays attention to the modern observations in
paleontology and biology, which include major theoreticians
of the self-organization (d’Arcy Thompson, Henri Bergson,
René Thom, Ilya Prigogine). The second part presents
different emergent evolutionary models including the sciences
of complexity, the non-linear dynamical systems, fractals,
attractors, epigenesis, systemics, and mesology with
different examples of the sciences of complexity and
self-organization as observed in the human lineage, from both
internal (embryogenesis-morphogenesis) and external
(mesology) viewpoints.
Contents 1: Introduction: Understanding the Origins and Evolution of Living Organisms-The Necessity of Convergence Between Old and New ... 1.1 Introduction References Part I: The Modernity of Old Paradigms 2: Self-Organization Meets Evolution: Ernst Haeckel and Abiogenesis 2.1 Introduction 2.2 The Philosophical Background to Haeckel´s Theory of Abiogenesis 2.3 Spontaneous Generation and Early Evolution in Haeckel´s Writings 2.4 Trees and Bushes: Polyphyletic vs. Monophyletic Evolution 2.5 Conclusions References 3: D´Arcy Wentworth Thompson´s ``Physico-Mathematical´´ Approach to the Investigation of Morphogenesis and Its Pertinence to C... 3.1 Introduction: D´Arcy Wentworth Thompson and the Aristotelian Foundations of Morphology 3.2 Aristotle´s Philosophy of Nature and Metaphysics 3.3 Kant on Substance, Teleology, and Mechanism 3.4 Thompson´s ``Physico-Mathematical´´ Approach to the Study of Morphogenesis and His Criticisms of Vitalism, Natural Selecti... 3.5 Thompson´s Notion of ``Mechanical Efficiency´´ and the Baldwin Effect 3.6 Ginsburg and Jablonka´s Cognitive-Behavioral and/or Learning-Based Account of the Causal Fuses Leading to the Cambrian Exp... 3.7 Embodying the Baldwin Effect: Complementing Ginsburg and Jablonka´s Cognitive-Behavioral and/or Learning-Based Account of ... 3.8 Conclusion: The Importance of D´Arcy Thompson´s Physico-Mathematical Approach to the Study of Morphogenesis-Teleology and ... References 4: From Dissipative Structures to Biological Evolution: A Thermodynamic Perspective 4.1 Self-Organization in Non-equilibrium Systems 4.1.1 Classical and Modern Thermodynamics 4.1.2 Self-Organization in Systems Far from Thermodynamic Equilibrium 4.1.3 Dissipative Structures 4.1.3.1 Instability, Amplification of Fluctuations, and Establishment of a New Structure 4.1.3.2 Spontaneous Symmetry Breaking, States Selection, and Sensitivity 4.1.3.3 Self-Healing 4.2 Universal Chiral Asymmetry in Biological Realm 4.3 Bio-Analog Dissipative Structures 4.4 Thermodynamics, Self-Organization, Dissipative Structures, and Evolution 4.4.1 Self-Replication and End-Directed Behavior 4.4.2 Nonequilibrium Sensitivity 4.4.3 Self-Healing 4.4.4 Mutations and Appearance of New Traits 4.4.5 Competition and Survival of the Fittest 4.4.6 Complexity and Complexification Through Evolution References 5: Self-Organization at Different Levels of Metazoan Complexity in Comparative Genomic-Phenomic Context 5.1 Introduction 5.2 Self-Organization in Cyanobacteria Cell Communities 5.3 Cell Social Behavior and Self-Organization in Metazoan Cell Assemblies In Vitro 5.3.1 Myogenic Cells In Vitro 5.3.2 Hemocyte Aggregation In Vitro 5.3.3 Metazoan Embryonic Cells 5.4 Topological Approach: Transformations in Metazoan Development and Evolution 5.5 Metazoan Body Plan in Molecular-Genetic and Macroevolutionary Context 5.5.1 Gene Regulatory Networks: The Inevitability of Self-Organization 5.5.2 Genome-Phenome Mapping/Correlations 5.5.3 Developmental Molecular-Genetic Machinery in Vertebrates 5.5.4 Molecular-Genetic Background of Metazoan Axial Body Plan 5.6 Social Behavior in Vertebrate Communities 5.7 Conclusions References 6: Instinct as Form: The Challenge of Bergson 6.1 Introduction 6.2 The Problem of Commonsense Knowledge 6.2.1 DNA and Coding ``Commonsense´´ 6.3 Consciousness, the Hard Problem, and Evolution 6.4 The Intellect, the Classic Metaphysic 6.4.1 Instinct 6.4.2 Intuition 6.4.3 The Eye 6.4.4 To Return: Creating Mousetraps and Wasps 6.4.5 Bergson´s Larger Vision of the Transforming Field References Part II: Modernity of Self-Organization and Emerging Paradigms 7: Biological Evolution of Microorganisms 7.1 Introduction 7.2 Molecular Genetics of Escherichia coli Bacteria and Their Phages 7.3 Mechanisms of Genetic Variation in Bacterial Genomes 7.4 Bacterial Restriction and Modification Systems 7.5 Role of Restriction Enzymes in Structural and Functional Genome Analysis and Genetic Engineering 7.6 Evolution Genes and the Duality of the Bacterial Genome 7.7 Self-Organization of the Biological Evolution of Microorganisms by Permanent Creation 7.8 Conclusions References 8: Self-Organization in Embryonic Development: Myth and Reality 8.1 Introduction 8.2 Metazoan Matter: Physical Bases of Self-Organization 8.3 Evidence for and Against Developmental Self-Organization 8.3.1 Gastrulation 8.3.2 Somitogenesis 8.3.3 Limb Skeletogenesis 8.4 Conclusions References 9: The Morphoprocess and the Diversity of Evolutionary Mechanisms of Metastable Structures 9.1 Introduction 9.2 Major Problems in Understanding Evolutionary Mechanisms 9.2.1 Epistemological Problem of the Ambiguity of the Notion of Evolution and the Associated Problem of Uncertainty of the Ter... 9.2.2 The Problem of Uncertainty of Direct Observation 9.2.3 The Problem of Uncertainty of Applicability 9.3 Conceptualization of the Morphoprocess 9.4 Three Conceptual Models of Microevolution of Highly Integrated Metastable Structures-Processes 9.4.1 The Model of Indirect Adaptogenesis (Granovitch 2018, 2021) 9.4.2 The Model of Direct Adaptogenesis (Granovitch 2018, 2021) 9.4.3 The Model of Constructional Transformism (Granovitch 2018, 2021), syn. Orthogenesis (Term-Haacke 1893, cit. ex. Popov 20... 9.4.3.1 Evidence of a Limited and ``Non-homogenous´´ Character of Variation Has Been Analysed Before (Granovitch 2018, 2021), ... 9.4.3.2 Evidence of a Regular and Correlated Character of the Morphogenetic Processes in Multicellular Organisms 9.4.3.3 Evidence of Self-Assembly of Molecular and Cellular Structures 9.5 Conclusion References 10: Mesological Plasticity as a New Model to Study Plant Cognition, Interactive Ecosystems, and Self-Organized Evolutionary Pr... 10.1 Introduction 10.2 The Epistemic Concept of Plasticity: Ontology and Complexion 10.3 The Concept of Mesology: Being, Environment, and Trajection 10.4 Plant Electrome and Cognition 10.4.1 Behaviors and Signalization in Plants 10.4.2 Role of Low-Voltage Spontaneous Variations or Electrophytograms (EPGs) Recorded at the Whole Plant Level: Dynamics of t... 10.4.3 Signature of the Electrome and Plant Cognition: A New Electromic Reading Grid 10.5 Mesological Plasticity as a New Model to Study Plant Evolutionary Biology 10.5.1 Plasticity as the ``as that´´ or the Third Included of the Mesological Formulation 10.5.2 Mesological Relationships Between Plants and Their Milieu: The Uexküll´s Gap 10.5.3 Semiosis, Uexküll´s Primary-Meaning Making and Functional Circle: An Ecosensitive Complexion? 10.5.4 Phyto- vs Ecosemiotics as an Experimental Field of Mesological Plasticity: Evolutionary Biology and the Umvelt of Plants 10.6 Assessments of in Loco Mesological Plasticity Using Monitored EPG Kits: A Key Approach to Study Electrome Patterns in Nat... 10.7 The Plant Mesological Plasticity: A Unique Cognitive, Electromic, and Ecosemiotic Interface References 11: Quantum Fractal Thermodynamics to Describe the Log-Periodicity Law in Species Evolution and Human Organizations 11.1 Introduction 11.1.1 Length of a Fractal Interaction: Homogeneous Time and Entropic Fractal Time 11.1.2 The States of a Fractal: Application to the Generalized Surface Cantor Fractal 11.2 Interaction Time of a Fractal State 11.3 Energy of a Fractal State 11.4 The Mass of a Fractal State: The Variation of Mass with the Order of the Fractal State 11.5 A Planck-Einstein-Like Law for the Fractal State Energy 11.6 Kinetic Chain Temperature, Exergy, and Dispergy of a Fractal State 11.7 Entropy Production Between the Fractal States: The Kinetic Chain Temperature 11.8 Irreversibility and the Structuration Efficiency of a Log-Periodic Phenomenon 11.9 Conclusion References 12: Sapiens and Cognition: The Optimal Vertical Nervous System-The Last Threshold of Self-Organized and Self-Memorizing Increa... 12.1 The Premises 12.2 Lamarck and Darwin, Pioneers of the Self-Organized Evolution 12.3 Orthogenesis, Macroevolution, and the Synthetic Theory (Princeton, 1947) 12.4 Posing the Evolutionary Problem: The Embryonic Trajectories of the Nervous System Versus Locomotion 12.4.1 Locomotion 12.4.2 More Precise Vocabulary to Clarify the Problem: The Endoskeleton of the Axial Skeleton 12.4.3 The Straightened Axial Endoskeleton: The Result of an Internal Evolutionary Process 12.4.4 Human Paleontology and the Neural Straightening: One Century of Dilemma Between Locomotion and Encephalon 12.5 The Straightening, an Embryonic Dynamical Reality 12.5.1 A Bibliographic Rediscovery 12.5.2 The Mandible, the Double Pantograph, and the Craniofacial Contraction 12.5.3 The Embryonic Origin of the Neural Straightening 12.5.4 Nonhuman Primate Embryogenesis 12.5.5 Embryogenesis, Homeotic Genes, and Viscoelastic Dynamics 12.5.5.1 Hominins Verticality and Homeotic Genes 12.5.5.2 Embryonic Straightening and Viscoelastic Dynamics 12.6 Embryogenesis and Paleontology: Consequences for the Recognition of Extinct Taxa in the Fossil Records 12.6.1 Craniocaudal Discontinuities in Phylogenetic Continuities 12.6.2 A Key Distinction: Different Appendicular Adaptations for a Same Embryonic Axial Straightening 12.6.3 Wet Woodland and the Role of Females in Hominization Processes 12.6.4 Cerebro-Cerebellar Rubicon, Psychomotricity, Mother-Infant Interactions, and Cognitive Implications 12.7 An Emerging Evolutionary Problematic 12.7.1 Environments and Self-Memorizing Evolutionary Processes 12.7.1.1 Dissipative Structures and Unpredictability 12.7.1.2 Self-Memorization, Conservative Dynamics with Innovative Organization 12.7.2 Self-Organization, Self-Memorization, and Predictability 12.7.3 Examples of Memory in Nonlinear Systems 12.7.4 Macroevolutionary Straightening and Self-Memorization Versus Random Ecological Epiphenomenon 12.8 Conclusion: The Emergence of Life Helps to Understand the Phylogenetic Neuraxis Straightening References 13: Evolutionary Creativity 13.1 Introduction 13.2 The Complexity of Autos 13.3 Our Reality Is Not Primary, It Is Emergent 13.4 Autos Revealed and Hidden 13.4.1 The Emergence of Autos 13.4.2 The Constellation of Autos 13.5 The Unity of Duality 13.5.1 The Organizing Loop 13.5.2 Computing Apparatus and Geno-Phenomenal Transformations 13.6 The Duality of the Unity 13.6.1 Symbiotic Uniduality 13.6.2 Internal Competition and Antagonism 13.6.3 The Struggle to the Death 13.6.4 Dialogical Unity 13.6.5 The Republic of the Complex: Between the Empire of the Genes and the Empire of the Environment 13.7 Generativity and Genesis 13.7.1 Generativity and Genesis 13.7.2 The Resurrection of the Past 13.8 Biological Oscillation, a Principle of Uncertainty 13.8.1 Biological Individuality and the Living Individual 13.8.2 Individuality and Individual 13.8.3 Individual Autonomy 13.8.4 The Individual Being 13.8.5 The Non-Elementary Individual 13.9 Reason and Unreason in Life 13.9.1 The First Level of Rationality 13.9.2 The Second Level of Irrationality 13.9.3 The Third Level: Complex Rationality 13.9.4 The Fourth Level: The Reverse Side of Rationality: Infra? Meta? Rationality 13.9.5 Inoptimization 13.9.6 Toward an Open Rationality 13.9.7 Open Life 13.10 Living Creativity 13.10.1 Life Is a Creator of Creativity 13.10.2 The Challenge 13.10.3 Generalized Life 13.11 Conclusion References