دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second edition. نویسندگان: Brahim Aïssa, Emile I. Haddad, Wes R. Jamroz سری: Materials, circuits and devices series ISBN (شابک) : 9781523125197, 1785619934 ناشر: The Institution of Engineering and Technology سال نشر: 2019 تعداد صفحات: 241 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Self-healing materials : from fundamental concepts to advanced space and electronics applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد خود ترمیم شونده: از مفاهیم اساسی تا کاربردهای پیشرفته فضا و الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به مفاهیم کلیدی فرآیندهای خوددرمانی، از وقوع آنها در طبیعت تا پیشرفت های اخیر در تحقیقات دانشگاهی و صنعتی می پردازد. این شامل شرح و توضیح دقیق طیف گسترده ای از مواد و کاربردها مانند پلیمری، ضد خوردگی، رنگ های هوشمند و نانولوله های کربنی است.
This book addresses the key concepts of self-healing processes, from their occurrences in nature through to recent advances in academic and industrial research. It includes a detailed description and explanation of a wide range of materials and applications such as polymeric, anticorrosion, smart paints, and carbon nanotubes.
Cover Contents List of figures List of tables Preface 1 Introduction References 2 Natural systems and processes 2.1 Introduction 2.2 Growth and functional adaptation 2.3 Hierarchical structuring 2.4 Natural self-cleaning and self-healing capabilities 2.4.1 Self-cleaning 2.4.2 Damage and repair healing 2.4.3 Biological wound healing in skin 2.5 Conclusions References 3 Theoretical models of healing mechanisms 3.1 The first level models 3.2 Example of modelling with finite element analysis (ANSYS code) 3.3 Third level models References 4 Self-healing of polymers and composites 4.1 Microcapsules 4.1.1 Effects of the size and the materials of microcapsules on self-healing reaction performance 4.1.2 Retardation of fatigue cracks 4.1.3 Delaminating substrate 4.2 Choice of the healing agent/catalyst system 4.2.1 Healing agent 4.2.2 Ring opening metathesis polymerisation catalyst 4.3 Free catalyst-based epoxy/hardener and solvent encapsulation systems 4.3.1 Epoxy/hardener system 4.3.2 Solvent encapsulation 4.4 Hollow glass fibres systems – two component epoxies 4.5 Microvascular networks systems 4.6 Self-healing coatings for metallic structures References 5 Self-healing evaluation techniques 5.1 Methods with a three-and four-point bend test 5.2 Tapered double-cantilever beam 5.3 Compression after impact 5.4 Combining the four-point bend test and acoustic emission 5.5 Methods with dynamic impact 5.5.1 Indentation test with a dropping mass 5.5.2 High-speed ballistic projectile 5.5.3 Hypervelocity impact 5.6 Fibre Bragg grating sensors for self-healing detection References 6 Review of advanced fabrication processes 6.1 Ruthenium Grubbs' catalyst 6.1.1 Pulsed laser deposition technique 6.1.2 Experimental preparation of a ruthenium Grubbs' catalyst-pulsed laser deposition target 6.1.3 Experimental results 6.2 Healing capability of self-healing composites with embedded hollow fibres 6.2.1 Detail of the capillary filling with healing agent 6.2.2 Hollow fibres 6.2.3 Capillary filling with ENB healing agent material 6.2.4 Healing with hollow fibres 6.3 Encapsulation of the ENB healing agent inside polymelamine-urea-formaldehyde shell 6.3.1 Stability of ENB in poly-urea-formaldehyde shells 6.3.2 Preparation of ENB microcapsules with polymelamine-urea-formaldehyde shells 6.3.3 Comparison of the open-air stability of the polyureaformaldehyde and polymelamine-urea-formaldehyde shells encapsulating ENB healing agent 6.4 Integration of the ENB monomer with single-walled carbon nanotubes into a microvascular network configuration 6.4.1 Experimental details 6.4.2 Results and discussion 6.4.3 Elaboration of the three-dimensional microvascular network and self-healing testing References 7 Self-healing in space environment 7.1 Challenges of the self-healing reaction in the space environment 7.2 Approaches to space applications 7.2.1 Self-healing with microcapsules 7.2.2 Self-healing with carbon nanotubes 7.2.3 Self-healing of ceramics 7.2.4 Self-healing for re-entry vehicles 7.2.5 Self-healing foams 7.2.6 Integrating sensing within self-healing structures 7.2.7 Self-healing paints 7.2.8 Self-healing of electrical insulation 7.2.9 Foam layer surrounded conductor 7.2.10 Other self-healing products 7.2.10.1 PhotosilTM graded layer 7.2.10.2 Self-healing using polyethylene-co-methacrylic acid 7.2.10.3 Self-repairing shape-memory alloy ribbons 7.2.10.4 Multifunctional copolymers 7.2.10.5 Self-healing composites with electromagnetic functionality 7.3 Materials ageing and degradation in space 7.3.1 Mechanical ageing 7.3.2 Meteorites and small debris 7.3.3 Atomic oxygen effects 7.3.4 Vacuum effect 7.3.5 Space plasma 7.3.6 Thermal shock 7.3.7 Outgassing References 8 Self-healing capability against impact tests simulating orbital space debris 8.1 Elaboration of self-healing in resin and carbon fibre reinforced plastics 8.1.1 Preparation of resin sample 8.1.2 Validation of the high velocity impact test on epoxy based samples 8.1.3 Self-healing in carbon fibre reinforced polymer samples under high velocity impact 8.2 Self-healing in carbon fibre reinforced polymer samples under hypervelocity impact test 8.2.1 Sample preparation 8.2.2 Hypervelocity impact test 8.2.3 Study of the thickness of carbon fibre reinforced polymer samples after hypervelocity impact 8.2.4 Three point bending test 8.2.5 Damping effects of the carbon nanotubes material 8.3 Hypervelocity measurement with fibre Bragg grating sensors 8.4 Summary of the hypervelocity impact study References 9 Mitigating the effect of space small debris on COPV in space with fibre sensors monitoring and self-repairing materials 9.1 Introduction 9.2 Methodology 9.3 Experimental results 9.4 Healing verification 9.5 Conclusions References 10 Conclusions and outlook into the future References Index Back Cover