دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ali Ismail Awad (editor), Steven Furnell (editor), Marcin Paprzycki (editor), Sudhir Kumar Sharma (editor) سری: ISBN (شابک) : 303067360X, 9783030673604 ناشر: Springer سال نشر: 2021 تعداد صفحات: 323 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Security in Cyber-Physical Systems: Foundations and Applications (Studies in Systems, Decision and Control, 339) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت در سیستمهای فیزیکی-سایبری: مبانی و کاربردها (مطالعات در سیستمها، تصمیمگیری و کنترل، 339) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مرجع مرتبط برای هر خواننده ای است که علاقه
مند به جنبه های امنیتی سیستم های فیزیکی-سایبری است و به ویژه
برای کسانی که به دنبال آگاهی از آخرین پیشرفت ها در این زمینه
پویا هستند مفید است.
سیستم های فیزیکی-سایبری (CPS) با ترکیب ذاتی نرم افزار و اجزای
فیزیکی مشخص می شوند. عناصر ذاتی اغلب شامل ارتباطات داده های
سیمی یا بی سیم، دستگاه های حسگر، عملیات بلادرنگ و کنترل خودکار
عناصر فیزیکی هستند. نمونههای معمولی از حوزههای کاربردی مرتبط
شامل سیستمهای کنترل صنعتی، شبکههای هوشمند، وسایل نقلیه خودران
و اویونیک، نظارت میانی و روباتیک است. بنابراین تجسم CPS ها می
تواند از در نظر گرفتن دستگاه های اینترنت اشیا منفرد تا زیرساخت
های بزرگ باشد.
این کتاب در ده فصل ارائه شده توسط محققان بینالمللی در این
زمینه از دانشگاه و صنعت ارائه شده است، این کتاب مجموعهای از
مشارکتهای با کیفیت بالا را ارائه میکند که به طور جمعی به
وضعیت هنر در امنیت سیستمهای فیزیکی-سایبری و مرتبط با آن
میپردازد و تجزیه و تحلیل میکند. فن آوری ها فصلها خود شامل
ترکیبی مؤثر از نظریه و محتوای کاربردی، پشتیبانی از درک مسائل
امنیتی اساسی در حوزه CPS، در کنار پوشش مرتبط با پیشرفتهای
فنآوری و راهحلهای پیشنهادی برای پرداختن به آنها هستند.
فصلهایی که بخش بعدی کتاب را تشکیل میدهند به طور خاص بر روی یک
سری مثالهای موردی متمرکز شدهاند و نشان میدهند که چگونه
مفاهیم حفاظتی میتوانند به کاربرد عملی تبدیل شوند.
This book is a relevant reference for any readers
interested in the security aspects of Cyber-Physical Systems
and particularly useful for those looking to keep informed on
the latest advances in this dynamic area.
Cyber-Physical Systems (CPSs) are characterized by the
intrinsic combination of software and physical components.
Inherent elements often include wired or wireless data
communication, sensor devices, real-time operation and
automated control of physical elements. Typical examples of
associated application areas include industrial control
systems, smart grids, autonomous vehicles and avionics, medial
monitoring and robotics. The incarnation of the CPSs can
therefore range from considering individual Internet-of-Things
devices through to large-scale infrastructures.
Presented across ten chapters authored by international
researchers in the field from both academia and industry, this
book offers a series of high-quality contributions that
collectively address and analyze the state of the art in the
security of Cyber-Physical Systems and related technologies.
The chapters themselves include an effective mix of theory and
applied content, supporting an understanding of the underlying
security issues in the CPSs domain, alongside related coverage
of the technological advances and solutions proposed to address
them. The chapters comprising the later portion of the book are
specifically focused upon a series of case examples, evidencing
how the protection concepts can translate into practical
application.
Preface Contents About the Editors Realizing Cyber-Physical Systems Resilience Frameworks and Security Practices 1 Introduction 2 Cyber-Physical Systems 2.1 Primary Differences Between CPS and ITS Security 2.2 CPS Threats and Vulnerabilities 2.3 Cyber Resilience: What Does It Mean for CPS? 3 State-of-the-Art Review of Cybersecurity Frameworks 3.1 NIST Framework for Improving Critical Infrastructure Cybersecurity 3.2 NIST Framework for Cyber-Physical Systems 3.3 NIST Risk Management Framework for Information Systems Cybersecurity 3.4 MITRE Cyber Resiliency Engineering Framework 3.5 Comparison of the Frameworks 4 Cyber Standards and Recommended Practices for CPS 5 Formal Approaches for Realizing CPS Resilience 5.1 Cyber Resilience Quantification by Subjective Evaluation Using Analytical Hierarchy Process (AHP) 5.2 Cyber Resilience Assessment Using Multi-level Directed Acyclic Vulnerability Graph Model 5.3 Ranking Critical Assets Using TOPSIS Method 6 Challenges in Mapping of CPS Resilience with Security Concerns and Operational Domains 7 Conclusions References Key-Establishment Protocols for Constrained Cyber-Physical Systems 1 Introduction 2 The Problem of Key Establishment 3 Security Notions 4 State of the Art 4.1 Literature Review 5 Lightweight Key-Establishment Protocols Based on Elliptic-Curve Cryptography 5.1 Problem of Authenticity 5.2 Lightweight Authenticated Key Establishment 5.3 Revisiting Ju\'s Protocol 5.4 Security Analysis of Proposed Elliptic-Curve Protocol 6 Key Establishment in the Post-quantum World 6.1 Proposed Approach 6.2 Protocol Design 6.3 Security Analysis of Proposed Post-quantum Protocol 6.4 Application Scope 7 Conclusions, Final Remarks, and Future Work References Empirical Characterization of Network Traffic for Reliable Communication in IoT Devices 1 Introduction 1.1 Motivations 2 Background Study 2.1 Tools for Network Traffic Monitoring 2.2 Statistical Models for Network Traffic Characterization 2.3 Machine Learning Models for Network Traffic Classification 2.4 SDN Based Network Traffic Classification 3 Network Flow Monitoring and Analysis Framework 3.1 Packet Level Analysis 3.2 Flow Level Analysis 4 Applications of Network Traffic Characterization 4.1 Information Flow Monitoring 4.2 Efficient Bandwidth Utilization 4.3 Device and Application Identification 4.4 Monitoring Network Performance 4.5 Addressing Security Aspects 4.6 Role of Network Traffic Analysis for Cyber-Physical Systems 5 Empirical Results and Discussions 6 Strengths and Challenges 7 Future Research Scope 8 Conclusion References Machine Learning for Fostering Security in Cyber-Physical Systems 1 Introduction 2 Machine Learning 2.1 Overview 2.2 Important Techniques 3 Security in the Domain of Cyber-Physical System 4 Application of ML-Based on Security Type 4.1 Direct Security Threat Detection 4.2 Predictive Analysis and Anomalous Behavior 4.3 Risk Assessment Using Machine Learning 5 Application of ML-Based on System Design 5.1 Application Layer 5.2 Network Layer 5.3 Physical Layer 6 Limitations of Machine Learning Based Security in CPS 7 Guidelines for Application of Machine Learning in Cyber-Physical Security Systems 7.1 Use-Case Analysis 7.2 Scope of Implementation 7.3 Balancing Error Rates 7.4 Dataset Selection 8 Conclusion References A Model for Auditing Smart Intrusion Detection Systems (IDSs) and Log Analyzers in Cyber-Physical Systems (CPSs) 1 Introduction 2 Background Information on Audit of Smart IDSs and Log Analyzers in Cyber-Physical Systems (CPSs) 3 The Scope of Audit of Smart IDSs and Log Analyzers in Cyber-Physical Systems (CPSs) 4 Auditors’ Challenges in Auditing Smart IDSs in Cyber-Physical Systems (CPSs) 4.1 Research and Audit Issues on Smart IDSs in Cyber-Physical Systems 4.2 Issues with Detection Rules or Policies of Smart IDSs in Cyber-Physical Systems 4.3 Issues with Maintenance of Smart IDSs in Cyber-Physical Systems 4.4 Issues with Configurations of Smart IDSs in Cyber-Physical Systems 4.5 Issues with IDS Policy and Security Policy in Cyber-Physical Systems 4.6 Research and Audit Issues with Log Analyzers in Cyber-Physical Systems 4.7 Issues with Theoretical Frameworks for Designing Log Analyzers in Cyber-Physical Systems 4.8 Issues with Metrics for Designing Log Analyzers in Cyber-Physical Systems 5 Methodology for Auditing Smart IDSs and Log Analyzers in Cyber-Physical Systems (CPSs) 5.1 A Model for Auditing Smart IDSs and Log Analyzers in Cyber-Physical Systems 5.2 Results and Discussions 5.3 Suggestions for Improving Security in Cyber-Physical Systems 6 Conclusion References Model-Based CPS Attack Detection Techniques: Strengths and Limitations 1 Introduction 2 Related Work 3 Testbeds: Our Playground 3.1 SWaT: A Secure Water Treatment Testbed 3.2 WADI: A Water Distribution Plant 4 System Models 4.1 System Modelling Using Sub-space System Identification 4.2 System Modelling Using First Principles 4.3 Validation of the System Models 5 Attack Detection Framework 5.1 Kalman Filter 5.2 Residuals and Hypothesis Testing 5.3 Cumulative Sum (CUSUM) Detector 5.4 Bad-Data Detector 5.5 NoisePrint (Residual and Noise Fingerprint) 5.6 Design of 6 Attacker and Attack Model 6.1 Attacker Model 6.2 Attack Scenarios 6.3 Attack Execution 7 Performance Evaluation 7.1 Performance Metrics 7.2 Normal Operation 7.3 Attack Detection 8 Conclusions References Security of Cyber-Physical Monitoring and Warning Systems for Natural and Technological Threats 1 Introduction 2 Monitoring Information Conditions 2.1 The Concept of Environmental Monitoring 2.2 A Formal Description of the Monitoring Process 3 Organizational and Architectural Conditions of Monitoring 3.1 Classic Environmental Monitoring Systems 3.2 Multi-level Sensor Monitoring Networks 3.3 Regional Monitoring Systems 4 Threats to Information Security in Monitoring 4.1 Technical and Organizational Conditions for Monitoring 4.2 General Threats Classification 4.3 Special Types of Threats 5 Monitoring System Architecture 6 Resident Alert Subsystem 7 Summary References Risk Identification and Risk Assessment of Communication Networks in Smart Grid Cyber-Physical Systems 1 Introduction and Motivation 1.1 Introduction 1.2 Motivation 2 cyber-Physical System for the Smart Grid 2.1 Overview of the Smart Grid Power System 2.2 Smart Grid Cyber-Physical System 3 Communication Networks for SGCPS 4 Applications of Smart Grid CPS 4.1 SGCPS for Synchrophasor Applications 4.2 SGCPS for Advanced Metering Applications 4.3 SGCPS for Electrical Vehicular Applications 5 Risk Identification and Risk Assessment of SGCPS 5.1 Synchrophasor Application 5.2 Advanced Metering Application 5.3 Electric Vehicular Application 6 Case Studies 6.1 Synchrophasor Applications of SGCPS 6.2 Advanced Metering Application of SGCPS 6.3 Electric Vehicular Application of SGCPS 7 Conclusion References An Overview of Cybersecurity for Natural Gas Networks: Attacks, Attack Assessment, and Attack Detection 1 Introduction and Background 2 Physical Structure of Natural Gas System 3 Natural Gas Market Overview 4 Gas Pipeline Dynamics 5 Gas System Steady-State Operation Model 6 Categorization of Cyber-Physical-Attacks on Natural Gas Systems 7 An Overview of Cyber-Physical-Attack Detection on Natural Gas Networks 7.1 Data-Based Approaches 7.2 Model-Based Approaches 7.3 Combined Approaches 8 Models and Theory of Cyber-Physical Attacks and Illustrative Detection Algorithms 8.1 Sensor Measurement Model 8.2 Topology Attack 9 Numerical Examples 9.1 Example Natural Gas System 9.2 MiMA/Spoofing Attacks: False Compression Boost Ratio Attack 9.3 MiMA/Spoofing Attacks: False Pressure and Flow Values 9.4 Topology Attacks 10 Conclusion 11 Proof of Theorem 1 References Secure Dynamic Nonlinear Heterogeneous Vehicle Platooning: Denial-of-Service Cyber-Attack Case 1 Introduction 1.1 State-of-the-Art 1.2 Related Work 1.3 Contributions 1.4 Chapter Organization 2 System Modeling 2.1 Platoon Model 2.2 Platoon Control Objectives 2.3 Attack Description 3 Secure Controller Design for Dynamic Heterogeneous Platooning 3.1 Overview 3.2 Design of the Secure Controller 3.3 Stability Analysis of Secure–DNMPC 4 Dynamic Platoon Control: Handling Cut-in/Cut-out Maneuvers 5 Simulation Results 5.1 DoS Attack Modeled as a Network Blocker 5.2 DoS Attack Modeled as an Exceeding Time Delay Injection in the Data Transmission 6 Conclusion and Future Directions References