دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vijayalakshmi Saravanan, Alagan Anpalagan, T. Poongodi, Firoz Khan سری: Internet of Everything (IoE): Security and Privacy Paradigm ISBN (شابک) : 2020028013, 9781003009092 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 191 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Securing IoT and Big Data: Next Generation Intelligence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ایمن سازی اینترنت اشیا و داده های بزرگ: هوش نسل بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب IoT و Big Data را از نقطه نظر فنی و تجاری پوشش می دهد. این کتاب اصول طراحی، الگوریتم ها، دانش فنی و بازاریابی سیستم های اینترنت اشیا را توضیح می دهد. این بر کاربردهای داده های بزرگ و اینترنت اشیا تأکید دارد. این شامل الگوریتم های علمی و تکنیک های کلیدی برای ادغام هر دو منطقه است. کاربردهای موردی واقعی از صنایع مختلف برای تسهیل درک این رویکرد ارائه می شود. این کتاب در ادامه به اهمیت الگوریتمهای امنیتی در ترکیب اینترنت اشیا و دادههای بزرگ میپردازد که در حال حاضر در فناوریهای ارتباطی در حال تکامل هستند. این کتاب برای محققان، متخصصان و دانشگاهیان حوزه های بین رشته ای و فرا رشته ای نوشته شده است. خوانندگان این فرصت را خواهند داشت تا ایده های مفهومی را با مثال های عملی گام به گام بدانند که بدون توجه به سطح خواننده، درک را آسان می کند.
This book covers IoT and Big Data from a technical and business point of view. The book explains the design principles, algorithms, technical knowledge, and marketing for IoT systems. It emphasizes applications of big data and IoT. It includes scientific algorithms and key techniques for fusion of both areas. Real case applications from different industries are offering to facilitate ease of understanding the approach. The book goes on to address the significance of security algorithms in combing IoT and big data which is currently evolving in communication technologies. The book is written for researchers, professionals, and academicians from interdisciplinary and transdisciplinary areas. The readers will get an opportunity to know the conceptual ideas with step-by-step pragmatic examples which makes ease of understanding no matter the level of the reader.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Acknowledgements List of Editors List of Contributors Chapter 1: Foundation of Big Data and Internet of Things: Applications and Case Study 1.1 Introduction to Big Data and Internet of Things 1.1.1 Big Data Management Systems in Healthcare 1.1.2 Challenges in Healthcare 1.1.3 Sequencing Genomic Data 1.1.4 Deep Learning Applied to Genomic Data 1.1.5 Genomic Data and Modern Healthcare 1.2 Background and Rise of Internet of Things 1.2.1 IoT in Real-Time Healthcare Applications 1.2.1.1 Wearable Front-End Device 1.2.1.2 Smartphone Application 1.2.1.3 Cloud and Algorithms 1.2.1.4 How Does It Work in Real-Time? 1.3 Summary References Chapter 2: Securing IoT with Blockchain: Challenges, Applications, and Techniques 2.1 Introduction 2.2 Security Issues of IoT 2.2.1 IoT Malware 2.2.2 Device Updates Management 2.2.3 Manufacturing Defects 2.2.4 Security of Massively Generated Data 2.2.5 Authorization and Authentication Issues 2.2.6 Botnet Attacks 2.3 Introduction to Blockchain 2.3.1 Public Blockchain 2.3.2 Private Blockchain 2.3.3 Consortium Blockchain 2.4 Blockchain and IoT Integration: An Overview 2.5 Applications of Integration 2.5.1 Smart Homes and Cities 2.5.2 Healthcare 2.5.3 Internet of Vehicles 2.5.4 Smart Manufacturing 2.5.5 Supply Chain 2.5.6 Smart Energy Grids 2.6 Existing Research on Blockchain-Based IoT Security 2.6.1 Lightweight IoT Nodes as Thin Clients 2.6.2 IoT Gateways as Blockchain Nodes 2.6.3 IoT Nodes Integrated with Blockchain Clients 2.6.4 IoT Nodes as Regular Sensors 2.7 Conclusion and Future Work References Chapter 3: IoT and Big Data Using Intelligence 3.1 IoT in a Nutshell 3.2 The Buzzword: Big Data in a Nutshell 3.3 IoT vs Big Data 3.4 Data Generation – Machine vs Human 3.4.1 Machine-Generated Data 3.4.2 Human-Generated Data 3.5 Data Stream, Management, and Progression Using IoT and Big Data Approach 3.5.1 Data Streaming in IoT 3.6 IoT and Big Data Working Together Using Intelligence Stage 1: Device Connectivity and Data Forwarding Stage 2: Real-Time Monitoring Stage 3: Automated Analytics – Big Data Analytics and Complex Event Processing Machine Learning Algorithm Stage 4: Automation Stage 5: On-Board Intelligence 3.7 Working Challenges 3.7.1 Component Convergence Challenges (CCC) 3.7.2 Embedded Network Challenges (ENC) 3.7.3 Analytics and Application Challenges (AAC) 3.7.4 Ethical and Security Challenges (ESC) 3.7.5 IoT Adoption Challenges (IAC) 3.8 Conclusion References Chapter 4: Compulsion for Cyber Intelligence for Rail Analytics in IoRNT 4.1 Introduction 4.2 Computer-Based Intelligence 4.2.1 Cyber Threat Intelligence 4.2.2 Big Data and Analytics 4.3 Analytics Types: Descriptive, Prescriptive, and Predictive 4.4 Understanding Predictive and Concise Analysis 4.4.1 Analytical Methods 4.4.2 Descriptive Analytics 4.4.3 Predictive Analytics 4.4.4 Prescriptive Analytics 4.5 Railway Networks 4.5.1 Industry Pan Rail Directions 4.5.1.1 Marketplace Size 4.5.1.2 Investment/Evolution 4.5.1.3 Government Initiatives 4.5.1.4 Road Ahead 4.6 Rail Analytics 4.7 Internet of Rail Network Things 4.7.1 From Application Enabling Interface to IoT 4.7.2 Investing in Intelligence 4.8 Big Data in Rail Intelligence Based on Cyber Threat 4.8.1 An Effective Cyber Security Strategy for the Rail Sector 4.8.1.1 Dedicated Skills 4.8.1.1.1 Sectorial and Cross-sectorial Cooperation 4.8.1.1.2 Security-by-Design 4.8.1.1.3 Research and Innovation (R&I) 4.8.1.1.4 Working Together with the EU Institutions 4.9 Cyber Security Risk Management Strategic and Tactical Capabilities 4.10 Cyber-Attacks Affecting Railways 4.11 Railway Cyber Security: Railway Operations and Assets Security 4.11.1 Cyber Security Railway Future Vulnerabilities 4.11.2 Cyber Security in the Fight Against Railways 4.12 Conclusion References Chapter 5: Big Data and IoT Forensics 5.1 Background and Introduction 5.2 Types of IoT Forensics 5.2.1 Cloud Forensics 5.2.2 Network Forensics 5.2.3 Device-Level Forensics 5.3 Sources and Nature of Data 5.3.1 Big Data 5.3.2 IoT Forensics Data 5.4 Role of Big Data in IoT Forensics 5.4.1 Big Data Technologies 5.4.1.1 Hadoop 5.4.1.2 Spark 5.4.1.3 Kafka 5.4.2 Big Data Analytics 5.4.2.1 Data Stream Learning 5.4.2.2 Deep Learning 5.4.2.3 Incremental and Ensemble Learning 5.4.2.4 Granular Computing-Based Machine Learning 5.5 IoT Forensics Investigation Framework 5.5.1 Steps for IoT Forensics Investigation 5.5.1.1 Evidence Collection 5.5.1.2 Examination 5.5.1.3 Analysis 5.5.1.4 Reporting 5.5.2 Forensic Soundness 5.5.2.1 Meaning 5.5.2.2 Errors 5.5.2.3 Transparency and Trustworthiness 5.5.2.4 Experience 5.6 Challenges in IoT Forensics 5.6.1 Variety of Data 5.6.2 Security 5.6.3 Privacy 5.6.4 Data Organization 5.7 Case Studies Using IoT Forensics 5.7.1 Smart Health Monitoring System 5.7.2 Amazon Echo as a Use Case 5.7.3 IoT in a Smart Home 5.8 Solution Methodology Proposed 5.8.1 Machine Learning Algorithms 5.8.2 Public Digital Ledger 5.9 Opportunities and Future Technologies 5.9.1 Forensic Data Dependability 5.9.2 Models and Tools 5.9.3 Smart Analysis and Presentation 5.9.4 Resolving Legal Challenges 5.9.5 Smart Forensics for IoT 5.9.6 Emerging Technologies for IoT 5.10 Conclusion References Chapter 6: Integration of IoT and Big Data in the Field of Entertainment for Recommendation System 6.1 Introduction 6.2 Background 6.3 Analysis and Algorithms 6.4 Case Study 6.5 Discussion 6.6 Conclusion References Chapter 7: Secure and Privacy Preserving Data Mining and Aggregation in IoT Applications 7.1 Introduction 7.2 Privacy and Security Challenges in IoT Applications 7.2.1 Identification 7.2.2 Localizing and Tracking 7.2.3 Life Cycle Transitions 7.2.4 Secure Data Transmission 7.3 Secure and Privacy Preserving Data Mining Techniques 7.3.1 Privacy Preserving Techniques at Data Collection Layer 7.3.1.1 Additive Noise 7.3.1.2 Multiplicative Noise 7.3.2 Privacy Preserving at Data Publishing Layer 7.3.2.1 Generalization 7.3.2.2 Suppression 7.3.2.3 Anatomization 7.3.2.4 K-Anonymity 7.3.2.5 L-Diversity 7.3.2.6 Personalized Privacy 7.3.2.7 Differential Privacy 7.3.2.8 ∈-Differential Privacy 7.3.3 Privacy Preserving at Data Mining Output Layer 7.3.3.1 Association Rule Hiding 7.3.3.2 Classifier Effectiveness Downgrading 7.3.3.3 Query Auditing and Inference Control 7.3.4 Distributed Privacy 7.3.4.1 One out of Two Oblivious Transfer 7.3.4.2 Homomorphic Encryption 7.4 Security Ensuring Techniques for Privacy Preserving Data Aggregation 7.4.1 Privacy Preservation Using Homomorphic Encryption and Advanced Encryption Standard (AES) 7.4.1.1 Implementation of Homomorphic Encryption and AES Algorithm 7.4.1.2 Encryption and Exchange 7.4.1.3 Decryption and Confusion 7.4.1.4 Encryption and Reporting 7.4.1.5 Verification and Aggregation 7.4.1.6 Security Analysis 7.4.1.7 Performance Evaluation 7.4.2 Evolutionary Game-Based Secure Private Data Aggregation 7.4.3 Slice-Mix-Aggregate and iPDA 7.5 Conclusion List of Abbreviations References Chapter 8: Real-Time Cardiovascular Health Monitoring System Using IoT and Machine Learning Algorithms: Survey 8.1 Introduction 8.2 Cardiovascular Diseases (CVD) 8.3 Motivation and Classification 8.3.1 Internet of Things (IoT) 8.3.2 IoT Applications 8.3.3 IoT in Healthcare 8.3.4 Machine Learning 8.3.5 Machine Learning in Healthcare 8.4 Comparison of Healthcare Monitoring Systems Under IoT 8.5 Machine Learning Algorithms Implemented in CVD Healthcare Monitoring System 8.5.1 Implementation of Random Forest and KNN for CVD Health Data 8.5.2 Implementation Results 8.6 Role of Fog and Edge Computing 8.7 Issues and Challenges 8.7.1 General Issues in Machine Learning Algorithms 8.7.2 Issues and Challenges of IoT in Healthcare 8.7.3 Issues and Challenges in Fog and Edge Computing 8.8 Conclusion References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z