دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: L Jegatha Deborah, P Vijayakumar, Brij B Gupta, Danilo Pelusi سری: ISBN (شابک) : 1000856445, 9781000856446 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 298 [299] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Secure Data Management for Online Learning Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت امن داده برای برنامه های آموزشی آنلاین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با استفاده روزافزون از آموزش الکترونیکی، فناوری نه تنها شیوه عملکرد کسبوکارهای شرکتی را متحول کرده است، بلکه بر فرآیندهای یادگیری در بخش آموزش نیز تأثیر گذاشته است. آموزش الکترونیکی کم کم جایگزین روش های سنتی تدریس می شود و امنیت در آموزش الکترونیکی موضوع مهمی در زمینه آموزشی واقعی است. توسط این کتاب، شما با چارچوب های نظری، روش های فنی، امنیت اطلاعات و یافته های تحقیقات تجربی در این زمینه برای محافظت از رایانه ها و اطلاعات خود در برابر دشمنان آشنا خواهید شد. \"راه حلی برای ایمن سازی مسائل مدیریت داده برای برنامه های آموزشی آنلاین\" شما را علاقه مند و درگیر خواهد کرد.
With the increasing use of E-learning, technology has not only revolutionized the way corporate businesses operate but has also impacted the learning processes in the education sector. E-Learning is slowly replacing the traditional methods of teaching and Security in e-learning is an important issue in the actual educational context. By this book, you will be familiarized with the theoretical frameworks, technical methodologies, Information security, and empirical research findings in the field to protect your computers and information from adversaries. "Solution to secure data management issues for online learning applications" will keep you interested and involved throughout.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgements Editors’ biographies Contributors Chapter 1: Secure online assessment of students using optimized deep learning techniques 1.1 Introduction 1.2 Literature survey 1.2.1 Related works 1.2.2 Review 1.3 Architectural model 1.3.1 Proposed architectural model and user-centric system in education 1.3.2 Support from learners 1.3.3 Support from teaching 1.3.4 Centers of learning 1.3.5 Feedback 1.4 Process utilized for e-learning 1.4.1 E-learning trends 1.4.2 General elements needed for e-learning 1.4.2.1 Content 1.4.2.2 Collaboration 1.4.2.3 Skills management 1.4.2.4 Assessment 1.4.2.5 Learning management 1.4.2.6 Integrated system 1.5 Cyber security and education 1.5.1 Building digital trust 1.5.2 Bring your own device and remote access 1.5.3 Learning management system security 1.5.4 Largest cyber security threats in higher education 1.6 Security threats, detection and protection in distributed e-learning systems 1.6.1 Cyber security issues 1.6.1.1 Authentication 1.6.1.2 Accessibility 1.6.1.3 Secrecy attacks 1.6.1.4 Integrity attacks 1.6.2 Privacy concerns 1.7 Modified deep neural network by proposed fitness-based butterfly optimization algorithm 1.7.1 Modified deep neural network 1.7.2 F-BOA 1.8 Results and discussions 1.8.1 Experimental setup 1.8.2 Learner’s activity ratio analysis 1.8.3 Performance analysis of learners 1.8.4 Insecure information analysis 1.8.5 Accuracy analysis 1.9 Conclusion References Chapter 2: Survey of risks and threats in online learning applications 2.1 Introduction 2.2 Background and related work 2.3 Risks and threats in online learning 2.3.1 ARP cache poisoning 2.3.2 Rootkits 2.3.3 SQL injection 2.3.4 Session hijacking 2.3.5 Credential prediction 2.3.6 Stack-smashing attacks 2.3.7 Phishing attacks 2.4 Discussion 2.5 Conclusion Bibliography Chapter 3: Approaches to overcome security risks and threats in online learning applications 3.1 Introduction 3.2 Security risks and threats 3.2.1 Broken access control 3.2.2 Cryptographic failures 3.2.3 Injection 3.2.4 Insecure design 3.2.5 Security misconfigurations 3.2.6 Vulnerable and outdated components 3.2.7 Identification and authentication failures 3.2.8 Software and data integrity failures 3.2.9 Security logging and monitoring failures 3.2.10 Server-side request forgery 3.3 Remedies 3.3.1 Broken access control 3.3.2 Cryptographic failures 3.3.3 Injection 3.3.4 Insecure design 3.3.5 Security misconfigurations 3.3.6 Vulnerable and outdated components 3.3.7 Identification and authentication failures 3.3.8 Software and data integrity failures 3.3.9 Security logging and monitoring failures 3.3.10 Server-side request forgery 3.3.10.1 Phishing attacks 3.3.11 Malware attacks 3.3.12 DDoS attacks 3.4 Conclusion References Chapter 4: Secure data aggregation and sharing for online learning applications 4.1 Introduction 4.2 Related work 4.3 Preliminaries 4.3.1 Trustworthiness evaluation 4.3.2 Oblivious Random Access Memory (ORAM) and improved ORAM 4.3.3 Block design and ( v, k + 1, 1)-design 4.4 Main idea 4.4.1 Overview of the proposal 4.4.2 Trustworthiness evaluation based identity authentication 4.4.3 Privacy-preserving data storage 4.4.4 Anonymous and traceable data sharing 4.5 Performance 4.6 Conclusion Acknowledgements Note References Chapter 5: A secure data-centric approach to blended learning for programming languages 5.1 Introduction 5.1.1 Blended learning 5.1.1.1 Blended learning models 5.1.1.2 Advantages and Disadvantages 5.2 Challenges in teaching programming languages 5.3 Student-centered learning 5.4 Learning styles 5.4.1 Verbal/Linguistic learners 5.4.2 Visual/Spatial learners 5.4.3 Auditory/Musical learners 5.4.4 Physical/Kinesthetic Learners 5.4.5 Logical/Mathematical learners 5.4.6 Interpersonal and Intrapersonal learners 5.5 Strategies used for teaching programming languages 5.5.1 Talk and chalk approach 5.5.2 Hands-on programming approach 5.5.3 Programming tool-based approach 5.5.4 Storytelling approach 5.5.4.1 How to create stories 5.5.4.2 Pen–paper approach 5.5.4.3 Dig deeper to identify the sole purpose of your story 5.5.4.4 Use a powerful heading 5.5.4.5 Design a road map 5.5.4.6 Conclude with brevity 5.6 Blended learning platforms 5.6.1 Live streaming platforms 5.6.2 Learning management systems 5.6.3 Recording tools 5.6.4 Assessment and interaction tools 5.7 Security in blended learning 5.8 Summary References Chapter 6: Centralized key distribution protocol using identity-based encryption techniques in cloud computing environments 6.1 Introduction 6.1.1 Distributed group communication 6.1.2 Cloud security workload model 6.1.3 Mise-en-scène work 6.2 Literature survey 6.3 Protocol for identity-based encryption 6.4 The key generation procedure 6.4.1 Proposed key distribution process 6.4.1.1 Member join 6.4.1.2 Member left 6.5 Proposed scheme for key generation 6.5.1 Key updating algorithm 6.5.2 Security analysis for identity-based encryption 6.5.2.1 Backward secrecy 6.5.2.2 Forward secrecy 6.5.2.3 External user agent 6.6 Performance analysis of the proposed IBE-based system 6.7 Conclusion and future work References Chapter 7: Efficient key management and key distribution for online learning 7.1 Introduction 7.1.1 Authentication 7.1.1.1 Message authentication 7.1.1.2 Connection (access) authentication 7.1.2 Key generation and distribution 7.2 Literature review 7.2.1 E-learning authentication 7.3 Key encryption techniques for online learning 7.4 Key management and distribution for online learning 7.4.1 Key distribution 7.4.2 Key distribution center (KDC) 7.4.2.1 Centralized key distribution 7.4.2.2 Decentralized key distribution 7.4.3 Key distribution methods 7.4.3.1 Distribution of public keys 7.4.3.2 Private key management 7.4.3.3 Symmetric key distribution using symmetric encryption 7.5 Cryptographic techniques for secured online learning 7.6 Performance analysis in the proposed structure 7.7 Conclusion and future work References Chapter 8: An efficient privacy preserving and public auditing data integrity verification protocol for cloud-based online learning environments 8.1 Introduction 8.2 Literature survey 8.3 The proposed protocol 8.3.1 System initialization 8.3.2 Signature generation phase 8.3.3 Proof request phase 8.3.4 Proof generation phase 8.3.5 Proof verification phase 8.4 Security analysis 8.4.1 Support for public auditing 8.4.2 Completeness 8.4.3 Preservation of data privacy from TPA 8.5 Analysis of performance 8.6 Conclusion References Chapter 9: A novel secure e-learning model for accurate recommendations of learning objects 9.1 Introduction 9.2 Related works 9.3 Proposed framework 9.3.1 Learning style 9.3.2 Learning object 9.3.3 Hybrid filtering recommendation 9.3.4 Secure online evaluation platform 9.3.5 Formalization of the security model 9.4 Performance analysis 9.5 Conclusion References Chapter 10: Efficient key management and key distribution schemes for online learning 10.1 Introduction 10.1.1 Standards 10.1.2 Approaches 10.1.3 Learning 10.1.4 Efficient learning approaches 10.2 Feedback system 10.3 E-learning with digital educational tools 10.4 Free e-learning courses 10.5 Planning and scheduling a course 10.6 Challenges 10.7 Tools 10.8 Online learning – pros and cons 10.9 Five key success factors for online studying 10.10 Tips to engage learners for online and hybrid education 10.11 Six ways to move beyond class work 10.12 Pandemic with intelligent e-learning requirement 10.13 Literature survey 10.14 Conclusions References Chapter 11: Secure virtual learning using blockchain technology 11.1 Introduction 11.2 Overview of blockchain technology 11.3 Five things about blockchain technology 11.4 Application of blockchain technology in online education 11.4.1 Full record of learning trajectory 11.4.2 Certification of academic results that may be trusted 11.4.3 Educational information is distributed in a distributed mode 11.5 Academic issues around the world 11.6 Transition learning using blockchain possibilities 11.7 Discourse and challenges of blockchain integration in education 11.8 Various other uses of blockchain technology 11.8.1 Ethereum 11.8.2 Health care 11.8.3 Marketing 11.8.4 Protecting one’s intellectual property rights 11.8.5 Applications in community 11.9 Conclusions and recommendations References Chapter 12: A robust mutual and batch authentication scheme based on ECC for online learning in Industry 4.0 12.1 Introduction 12.2 Related works 12.3 Preliminaries 12.3.1 Elliptic curve cryptography 12.3.2 Bilinear pairing 12.3.3 System overview 12.4 Proposed scheme 12.4.1 Initialization phase 12.4.2 Learner authentication 12.4.2.1 Learner registration process 12.4.2.2 Key generation scheme 12.4.2.3 Learner’s anonymous certificate generation 12.4.2.4 Learner’s certificate verification 12.4.3 Instructor’s authentication 12.4.3.1 Key generation scheme 12.4.3.2 Instructor’s certificate generation 12.4.3.3 Instructor’s certificate verification 12.4.3.4 Integrity verification 12.4.3.5 License generation 12.4.3.6 License verification 12.4.4 Batch authentication 12.5 Security analysis 12.5.1 Resistance to impersonation attack 12.5.2 Resistance to message modification attack 12.5.3 Resistance to reply attack 12.5.4 Resistance to fake message attack 12.5.5 Anonymity and privacy preservation 12.5.6 Resistance against the non-repudiation attack 12.6 Performance analysis 12.6.1 Computational complexity 12.6.2 Communication cost 12.6.3 Instructor serving capability 12.7 Conclusion References Chapter 13: Sentiment Analysis: The beginning 13.1 Introduction 13.1.1 Motivation – the decision-making process 13.1.2 Sources of opinionated text 13.1.3 Types of sentiment language structure 13.1.4 Natural language processing 13.1.5 Sentiment Analysis 13.1.5.1 Steps in Sentiment Analysis 13.2 Granularity levels of Sentiment Classification 13.2.1 Levels of Sentiment Analysis 13.2.2 Machine learning for Sentiment Analysis 13.3 Feature extraction and selection techniques 13.3.1 Term frequency 13.3.2 Term Presence 13.3.3 Term position 13.3.7 Bag of Words 13.3.8 N-gram features 13.3.9 Emoticon dictionary 13.3.10 Topic-based features 13.3.11 Parts of speech 13.3.12 Removal of non-alphabetic characters 13.3.13 Negation handling 13.3.14 Short form expansion 13.3.15 Sentiment polarity score 13.3.16 Number of hashtags 13.4 Challenges in Sentiment Analysis 13.5 Research challenge accuracy 13.6 Applications and scope of Sentiment Analysis 13.7 Multilingual Sentiment Analysis 13.7.1 Thamizh text Sentiment Analysis 13.7.2 Chinese text Sentiment Analysis 13.7.3 Arabic text Sentiment Analysis 13.7.4 Urdu text Sentiment Analysis 13.7.5 Spanish text Sentiment Analysis 13.8 Performance metrics 13.9 Conclusion References Index