دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9780875900483, 9781118663998 ناشر: سال نشر: تعداد صفحات: 478 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هیدروترمال Seafloor: فعل و انفعالات فیزیکی ، شیمیایی ، بیولوژیکی و زمین شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گردش هیدروتنال در پشته های میانی اقیانوس یکی از فرآیندهای
اساسی است که انتقال انرژی و ماده از داخل زمین به لیتوسفر،
هیدروسفر و بیوسفر را کنترل می کند. فعل و انفعالات هیدروترمال
بر ترکیب پوسته اقیانوسی و شیمی اقیانوس ها تأثیر می گذارد.
علاوه بر این، میدانهای دریچه هیدروتنال، جوامع بیولوژیکی
متنوع و منحصربهفردی را با استفاده از جمعیتهای میکروبی که
انتقال انرژی شیمیایی گونههای شیمیایی محلول را به تولید کربن
آلی مرتبط میکنند، پشتیبانی میکنند.
بهطور سنتی، زیرسیستمهای فیزیکی، شیمیایی، بیولوژیکی و
زمینشناسی که تشکیل دهنده فرآیند گردش هیدروتنال هستند، مورد
مطالعه قرار گرفتهاند. با این حال، درک انتقال و شار جرم و
انرژی در میان این زیرسیستمها نیازمند یک رویکرد یکپارچه و
توسعه مدلهایی است که شامل تعاملات بین آنها باشد. ما
امیدواریم که این حجم درک سیستمهای هیدروتنال را فراتر از
تخصصهای فردی گسترش دهد و مطالعات چند رشتهای را در مورد
پیوندهای بین فرآیندهای فیزیکی، شیمیایی، بیولوژیکی و
زمینشناسی در سیستمهای هیدروتنال پشته میانی اقیانوس تحریک
کند.
Published by the American Geophysical Union as part of the Geophysical Monograph Series.
Hydrothennal circulation at mid-ocean ridges is one of the
fundamental processes controlling the transfer of energy and
matter from the interior of the Earth to the lithosphere,
hydrosphere, and biosphere. Hydrothermal interactions
influence the composition of the oceanic crust and the
chemistry of the oceans. In addition, hydrothennal vent
fields support diverse and unique biological communities by
means of microbial populations that link the transfer of the
chemical energy of dissolved chemical species to the
production of organic carbon.
Traditionally, the physical, chemical, biological, and
geological subsystems that constitute the hydrothennal
circulation process have been studied in isolation. However,
understanding the transfer and fluxes of mass and energy
among these subsystems requires an integrated approach and
the development of models that include interactions between
them. We hope that this volume broadens the understanding of
hydrothennal systems beyond individual specialties and
stimulates multidisciplinary studies of the linkages among
physical, chemical, biological and geological processes in
mid-ocean ridge hydrothennal systems.
Title Page ......Page 6
Copyright ......Page 7
Contents ......Page 8
Preface ......Page 10
INTRODUCTION......Page 13
TAG Hydrothermal Field......Page 16
Snake Pit Hydrothermal Field......Page 19
Methane Venting on the Mid-Atlantic Ridge......Page 22
Galapagos Ridge......Page 23
21°N East Pacific Rise......Page 24
Sediment-Hosted Hydrothermal Systems......Page 26
Large, Bare-Rock Fault-Controlled Systems......Page 29
Hydrothermal Systems Along the Neovolcanic Zones of theJuan de Fuca Ridge Associated with Young Volcanism......Page 30
Fast-Spreading EPR - 13°N and 9°-10°N......Page 37
17°-22°S Superfast- Spreading EPR Hydrothermal Sites......Page 45
DISCUSSION......Page 48
CONCLUSIONS......Page 50
REFERENCES......Page 51
INTRODUCTION......Page 59
Chemical Tracers......Page 60
Sampling Techniques......Page 61
Eastern Pacific Spreading Centers......Page 62
Western Pacific Marginal Basins......Page 67
Mid-Atlantic Ridge......Page 70
Indian Ocean......Page 72
Exploration Implications......Page 73
Geological Implications......Page 74
SUMMARY......Page 77
REFERENCES......Page 78
THE VENT ENVIRONMENT......Page 84
BACTERIA......Page 85
COMMUNITY STRUCTURE......Page 86
FOOD WEB......Page 88
Dispersal......Page 89
Distribution......Page 92
TEMPORAL CHANGES IN THE VENT COMMUNITY'S COMPOSITION......Page 93
REFERENCES......Page 94
THE STRUCTURE OF THE OCEANIC CRUST......Page 97
HEAT SOURCES AND CONVECTION IN THE OCEAN CRUST......Page 99
RECHARGE ZONES......Page 101
Low-Temperature Oxidation and Fixation of Alkalis in the Crust......Page 102
Fixation of Seawater Mg in the Crust......Page 105
Anhydrite Formation......Page 106
SUBSURFACE "REACTION ZONES''......Page 107
MAGMATIC INPUTS TO SUBMARINE HYDROTHERMAL SYSTEMS......Page 111
LINKS AMONG DIFFERENT REGIONS OF AXIAL HYDROTHERMAL SYSTEMS......Page 112
Focused Upflow Zones......Page 113
Diffuse Upflow Zones......Page 115
SUMMARY......Page 116
REFERENCES......Page 117
1. INTRODUCTION......Page 127
2.1. The Onset of Hydrothermal Activity and Focusing of Hydrothermal Upflow......Page 128
2.2. Diffuse Venting and White Smokers......Page 131
2.3. Focused, High-Temperature Venting and Black Smokers......Page 136
2.4. The Growth of Large Sulfide Deposits......Page 140
2.5. Additional Hydrologic Factors that Influence the Growth of Deposits......Page 143
3. PHYSICAL AND CHEMICAL CONTROLS ON THE MINERALOGY AND GEOCHEMISTRY OF SEAFLOOR SULFIDES......Page 145
3.1. Chemical Buffering of the Hydrothermal Fluids......Page 146
3.2. Pressure-Temperature P-T Paths and the Mixing-Cooling History of Vent Fluids......Page 148
3.3. Source-Rock Considerations......Page 151
3.4. Biological Interactions and Biomineralization......Page 152
3_5. Post-Depositional Processes......Page 156
4. SEES OF SEAFLOOR HYDROTHERMAL DEPOSITS......Page 157
5. SUMMARY AND CONCLUSIONS......Page 158
REFERENCES......Page 161
INITIAL MODELS OF BLACK SMOKER CHIMNEY GROWTH......Page 170
CHEMICAL MODELS OF SEAWATER-HYDROTHERMAL FLUID INTERACTION......Page 171
PHYSICAL MODELS OF BLACK SMOKER CHIMNEY GROWTH......Page 172
MODELING THE EFFECT OF THE PHYSICAL ENVIRONMENT ON CHEMICAL INTERACTIONS......Page 177
MODELS FOR GROWTH OF NON-BLACK SMOKER CHIMNEYS......Page 179
CONSIDERATION OF BIOLOGICAL PROCESSES......Page 182
Flanges......Page 183
200 meter diameter mound......Page 185
SUMMARY......Page 186
REFERENCES......Page 187
Deposits Types......Page 190
Oxide Muds......Page 191
Bacteria and Manganese Oxide Deposits......Page 192
Experimental Demonstration......Page 193
Bacterial Degradation of Sulfides......Page 195
Alvinellid Polychaetes......Page 196
Shrimp on MAR Chimneys......Page 197
INFLUENCE OF SULFIDE DEPOSITION ON VENT ORGANISMS......Page 198
Environmental Control of Organism Distribution......Page 200
Biotic Factors and Organism Distribution on Chimneys......Page 201
CONCLUDING REMARKS......Page 202
REFERENCES......Page 203
INTRODUCTION......Page 206
STABLE ISOTOPE SYSTEMATICS......Page 207
STABLE ISOTOPES AS TRACERS......Page 208
Fractionation......Page 209
Reservoir effects......Page 210
Analytical......Page 212
Hydrothermal Vent Fluids......Page 214
High temperature reaction zone......Page 217
Modeling isotopic systematics......Page 218
Discharge zone reactions......Page 223
Sulfur in hydrothermal systems......Page 224
Processes affecting sulfur isotope ratios......Page 226
CO2-CH4 in hydrothermal fluids......Page 227
CONCLUSIONS......Page 229
REFERENCES......Page 230
Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids ......Page 234
1. INTRODUCTION......Page 260
2. EXPERIMENTAL METHODS......Page 262
3.1 Experi mental......Page 264
3.2 Theoretical......Page 265
4.1 Controls on the Chemistry of Hot Spring Fluids at Mid-Ocean Ridges......Page 267
4.2. Hydrothermal Upflow Zones, Role of Cooling on the Chemistry of Hoe Spring Fluids......Page 274
5. CONCLUSIONS......Page 279
REFERENCES......Page 281
1. BACKGROUND......Page 285
2. DEEP-SEA SOURCES OF ENERGY FOR MICROBIAL PROCESSES......Page 287
3.1. Aerobic chemosynthesis......Page 290
3.2. Anaerobic chemosynthesis......Page 291
4.1. Aerobic sulfide, sulfir and thiosulfate oxidation......Page 292
4.2. Anaerobic sulfide oxidation......Page 294
4.4. Nitrification......Page 295
4.6. Aerobic heterotrophic oxidations......Page 296
4.8. Denitrification......Page 297
4.11. Methanogenesis......Page 298
4.12. Fermentation......Page 299
5. EFFECTS OF IN SITU TEMPERATURES AND PRESSURES ON MICROBIAL PROCESSES......Page 300
6. QUANTITATIVE ASPECTS AND PHYLOGENETIC CONSIDERATIONS......Page 301
7. OUTLOOK......Page 302
REFERENCES......Page 303
2. THE DIFFUSE FLOW BIOSPHERE......Page 309
3.1. Vestimentiferan Tube Worms......Page 312
3.2. Vescomyid Clams......Page 314
4. TISSUE STABLE CARBON AND NTIROGENISOTOPE VALUES......Page 315
4 1.8 13 C Values of Vesicomyid Clams......Page 316
4.2. 813C Values of Vestimentiferan Tube Warms......Page 318
4.3. 813C Values of "Bathytnodiolid" Mussels......Page 319
4.4. 815N Values and Community Level Stable Isotope Analyses......Page 321
REFERENCES......Page 323
Hydrothermal Plumes: Near and Far Field......Page 329
1. INTRODUCTION......Page 359
2. BUOYANT PLUME PHASE......Page 360
3. LATERAL SPREADING AND GEOSTROPHIC VORTEX FORMATION......Page 361
4. BASIN SCALE B-PLUME......Page 365
S. DISCUSSION......Page 367
REFERENCES......Page 368
2. TURBULENT, BUOYANT JETS AND PLUMES......Page 369
3.1. Morton, Taylor and Turner Model......Page 371
3.2. Reference Model for A Deep-Sea Hydrothermal Plume......Page 372
3.3. Other Effects......Page 374
4. COUPLING OF DYNAMICS WITH CHEMICAL PROCESSES......Page 377
4.1. Variability within Plumes......Page 378
REFERENCES......Page 379
Methane, 3He, and Mn......Page 381
Hydrogen......Page 384
Early Stage of Hydrothermal Particle Formation, The Black and White Smokers......Page 385
Intermediate Stage of Hydrothermal Particle Formation: TheBuoyant Plume......Page 386
Late Stage of Hydrothermal Particle Formation: The Neutrally Buoyant Plume......Page 388
Impact of Hydrothermal Particles on Ocean Chemistry......Page 391
BACTERIAL ACTIVITY WITHIN PLUMES......Page 392
Methane Oxidation......Page 393
Hydrogen Oxidatian......Page 394
ZOOKANICTON ACTIVITY ASSOCIATED WITH PLUMES......Page 396
RLIJNIE TRACERS OF VENTF1ELD VARIABILITY......Page 397
REFERENCES......Page 399
1. HISTORY OF METALLEEROUS SEDIMENT STUDIES......Page 404
2. FORMATION OF METALLIFEROUS SEDIMENTS......Page 406
3. HYDROTHERMAL PLUMES AND METALLIFEEOUS SEDIMENTS......Page 407
3.1. Osyanions in Metalliferous Sediment......Page 408
3.2. BEE and Thin Metalliferous Sediment......Page 409
3.4. Radiogenic Isotopes in Metalliferous Sodiecerrt......Page 411
4. TEMPORAL VARIATION IN HYDROTHERMAL ACTIVITY......Page 412
S. THE ROLE OF METALLIFEROUS SEDIMENTS IN GLOBAL BUDGETS......Page 413
6, INTERACTION OF FLUIDS WITH METALLIFEROUS SEDIMENTS......Page 414
REFERENCES......Page 415
I. INTRODUCTION......Page 420
2.1. Modes of Larval Dispersal......Page 422
2.3. Larval Behavior......Page 424
2.4. Larval Dispersal in Currents......Page 425
3. RECRUITMENT......Page 429
4. POPULATION GENETICS......Page 430
REFERENCES......Page 433
INTRODUCTION......Page 437
Heat Flax......Page 439
Water flux......Page 441
Variation of heat flow with sediment thickness and crustal age......Page 442
HEAT FLOW IN YOUNG LITHOSPHERE......Page 444
Results from densely sampled surveys......Page 445
Implications for the cessation of hydrothermal flow......Page 447
Thermal model for young lithosphere......Page 449
Model predictions for hydrothermal heat flux......Page 451
Model implications for crustal cooling......Page 453
REFERENCES......Page 454
2.1. Thermal Modeling......Page 458
2,2 Other Integrative Methods of Flux Determinations.......Page 460
2.3 Effluent Plumes......Page 463
3.2 Carbon Dioxide......Page 465
3.3 Sulfur......Page 466
4.2 Vertical Transport of the Hydrothermal Flux......Page 467
4.2.1 Physical processes.......Page 468
5.0 INFLUENCE OF RIDGE HYDROTHERMAL ACTIVITY ON ANCIENT OCEANS......Page 469
REFERENCES......Page 473