دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jose M Pardos Gotor
سری:
ISBN (شابک) : 1032107367, 9781032107363
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 311
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Screw Theory in Robotics: An Illustrated and Practicable Introduction to Modern Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه پیچ در رباتیک: مقدمه ای مصور و عملی بر مکانیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نظریه پیچ یک روش موثر و کارآمد است که در کاربردهای روباتیک استفاده می شود. این کتاب نحوه پیادهسازی تئوری پیچ را نشان میدهد، مبانی کلیدی و کاربردهای دنیای واقعی را با استفاده از یک رویکرد عملی و بصری توضیح میدهد.
این کتاب ابزاری ضروری برای کسانی است که در توسعه پیادهسازی رباتیک مشارکت دارند، از مطالعات موردی برای تحلیل مکاترونیک استفاده میکند. نظریه پیچ فرصت قابل توجهی برای تفسیر مکانیک در سطح بالا ارائه می دهد و تکنیک های هندسی معاصر را در حل مسائل رایج رباتیک تسهیل می کند. استفاده از این راه حل ها منجر به عملکرد بهینه در مقایسه با گزینه های جبری و عددی می شود. با نشان دادن تکنیک هایی مانند نماد برداری 6 بعدی و محصول نمایی (POE)، استفاده از نماد تئوری پیچ نیاز به جبر پیچیده را کاهش می دهد که منجر به کد ساده تر می شود که نوشتن، درک و اشکال زدایی آسان تر است. این کتاب تمرینها و شبیهسازیهایی را برای نشان دادن این موضوع با فرمولها و الگوریتمهای جدید ارائه میکند تا به خواننده در تسریع یادگیری خود کمک کند. از طریق راهنمایی کاربر از طریق اصول تئوری پیچ و ارائه مجموعه ای کامل از نمونه ها برای رایج ترین معماری دستکاری کننده ربات، پایه ای عالی برای درک پیشرفت های نظریه پیچ ارائه می دهد.
رویکرد بصری کتاب بدین معناست که میتوان از آن به عنوان یک ابزار خودآموز برای متخصصان در کنار دانشآموزان استفاده کرد. برای کسانی که در رشته رباتیک، مکانیک، مهندسی مکانیک و مهندسی برق مطالعه می کنند، جالب خواهد بود.
Screw theory is an effective and efficient method used in robotics applications. This book demonstrates how to implement screw theory, explaining the key fundamentals and real-world applications using a practical and visual approach.
An essential tool for those involved in the development of robotics implementations, the book uses case studies to analyse mechatronics. Screw theory offers a significant opportunity to interpret mechanics at a high level, facilitating contemporary geometric techniques in solving common robotics issues. Using these solutions results in an optimised performance in comparison to algebraic and numerical options. Demonstrating techniques such as 6D vector notation and the Product of Exponentials (POE), the use of screw theory notation reduces the need for complex algebra, which results in simpler code, which is easier to write, comprehend and debug. The book provides exercises and simulations to demonstrate this, with new formulas and algorithms presented to aid the reader in accelerating their learning. Through walking the user through the fundamentals of screw theory and providing a complete set of examples for the most common robot manipulator architecture, it delivers an excellent foundation through which to comprehend screw theory developments.
The visual approach of the book means it can be used as a self-learning tool for professionals alongside students. It will be of interest to those studying robotics, mechanics, mechanical engineering and electrical engineering.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments List of Abbreviations Author Introduction Chapter 1: Introduction 1.1 Motivation 1.1.1 A Historical Quest! 1.1.2 A Hundred Years of Menacing Robots! 1.1.3 A Century of Helping Robots! 1.1.4 And Only 50 Years of Commercial Robots! 1.1.5 The Mathematical Complexity of Robotics 1.1.6 Here Comes Screw Theory in Robotics 1.1.7 The Future of Robotics 1.2 About This Book 1.3 Preview 1.3.1 Outline 1.3.2 Chapter 1: Introduction 1.3.3 Chapter 2: Mathematical Tools 1.3.4 Chapter 3: Forward Kinematics 1.3.5 Chapter 4: Inverse Kinematics 1.3.6 Chapter 5: Differential Kinematics 1.3.7 Chapter 6: Inverse Dynamics 1.3.8 Chapter 7: Trajectory Generation 1.3.9 Chapter 8: Robotics Simulation 1.3.10 Chapter 9: Conclusions 1.4 Audience Further Reading Note Chapter 2: Mathematical Tools 2.1 Rigid Body Motion 2.2 Homogeneous Representation 2.2.1 Standard Rigid Body Motion 2.2.2 Homogeneous Basic Transformations 2.2.3 Motion Composition in the SPATIAL “S” Reference System 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems 2.2.5 Geometrical Interpretation 2.2.6 Exercise: Homogeneous Rotation 2.2.7 Exercise: Homogeneous Rotation Plus Translation 2.3 Exponential Representation 2.3.1 Modern Rigid Body Motion 2.3.2 Screw Rotation (Orientation) 2.3.3 Rigid Body Motion TWIST 2.3.4 Rigid Body Force WRENCH 2.3.5 Exponential Coordinates for a SCREW Motion 2.3.6 Exercise: Exponential Rotation 2.3.7 Exercise: Exponential Rotation Plus Translation 2.4 Summary Notes Chapter 3: Forward Kinematics 3.1 Problem Statement in Robotics 3.1.1 Kinematics Concept 3.1.2 Kinematics Mathematical Approach 3.1.3 Forward Kinematics (FK) 3.2 Denavit–Hartenberg Convention (DH) 3.2.1 Kinematics Treatment 3.2.2 DH FK Homogeneous Matrix Product 3.2.3 Puma Robots (e.g., ABB IRB120) 3.3 Product of Exponentials Formulation 3.3.1 A New Kinematics Treatment 3.3.2 General Solution to Forward Kinematics 3.3.3 Puma Robots (e.g., ABB IRB120) 3.3.4 Puma Robots (e.g., ABB IRB120) “Tool-Up” 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) 3.3.7 Scara Robots (e.g., ABB IRB910SC) 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) 3.3.9 Redundant Robots (e.g., KUKA IIWA) 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) 3.4 Summary Notes Chapter 4: Inverse Kinematics 4.1 Problem Statement in Robotics and Analytical Difficulty 4.1.1 Kinematics Concept 4.1.2 Inverse Kinematics Mathematical Approach 4.1.3 Analytical Difficulty to Solve Inverse Kinematics 4.2 Numeric vs. Geometric Solutions 4.2.1 A Numeric Approach to Solve Inverse Kinematics 4.2.2 An Example of a Numeric Algorithm 4.2.3 A Geometric Approach to Solve Inverse Kinematics 4.2.4 An Example of a Geometric Algorithm 4.2.5 Puma Robot Inverse Kinematics Algorithms 4.3 Canonical Subproblems for Inverse Kinematics 4.3.1 A Key Idea to Solve Inverse Kinematics 4.3.2 Paden–Kahan Subproblem One (PK1) – One Rotation 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT 4.3.2.2 PK1 Subproblem Simplification 4.3.3 Paden–Kahan Subproblem Two (PK2) – Two Crossing Rotations 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT 4.3.4 Paden–Kahan Subproblem Three (PK3) – Rotation to a Distance 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT 4.3.4.2 PK3 Subproblem Simplification 4.3.5 Pardos–Gotor Subproblem One (PG1) – One Translation 4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE 4.3.6 Pardos-Gotor Subproblem Two (PG2) – Two Crossing Translations 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT 4.3.7 Pardos-Gotor Subproblem Three (PG3) – Translation to a Distance 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT 4.3.8 Pardos-Gotor Subproblem Four (PG4) – Two Parallel Rotations 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE 4.3.9 Pardos-Gotor Subproblem Five (PG5) – Rotation of a Line or Plane 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE 4.3.10 Pardos-Gotor Subproblem Six (PG6) – Two Skewed Rotations 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT 4.3.11 Pardos-Gotor Subproblem Seven (PG7) – Three Rotations to a Point 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT 4.3.12 Pardos-Gotor Subproblem Eight (PG8) – Three Rotations to A Pose 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM 4.4 Product of Exponentials Approach 4.4.1 General Solution to Inverse Kinematics 4.4.2 Puma Robots (e.g., ABB IRB120) 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition 4.4.2.2 First Algorithm for ABB IRB120 IK “PK3+PK2+PK2+PK1” 4.4.2.3 Second Algorithm for ABB IRB120 IK “PG7+PK2+PK1” 4.4.2.4 Third Algorithm for ABB IRB120 IK “PG5+PG4+PK2+PK1” 4.4.2.5 Fourth Algorithm for ABB IRB120 IK “PG5+PG4+PG6+PK1” 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK 4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms 4.4.2.9 RST Robotics System Toolbox™ 4.4.2.10 ST24R Screw Theory Toolbox for Robotics 4.4.3 Puma Robots (e.g., ABB IRB120) “Tool-Up.” 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 “Tool-Up” Problem Definition 4.4.3.2 First Algorithm for ABB IRB120 “Tool-Up” IK “PG7+PG6+PK1” 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition 4.4.4.2 First Algorithm for ABB IRB1600 IK “PG7+PG6+PK1” 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition 4.4.5.2 First Algorithm for ABB IRB6620LX IK “PG1+PG4+PG6+PK1” 4.4.6 Scara Robots (e.g., ABB IRB910SC) 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition 4.4.6.2 First Algorithm for ABB IRB910SC IK “PG1+PG4+PK1” 4.4.6.3 Second Algorithm for ABB IRB910SC IK “PG1+PK3+PK1+PK1” 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK “PG5+PG3+PK1+PG8” 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation 4.4.8 Redundant Robots (e.g., KUKA IIWA) 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition 4.4.8.2 First Algorithm for KUKA IIWA IK “PK1+PK3+PK2+PK2+PK2+PK1” 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) 4.5 Summary Notes Chapter 5: Differential Kinematics 5.1 Problem Statement in Robotics 5.2 The Analytic Jacobian 5.2.1 A Traditional Description 5.2.2 Analytic Jacobian to Forward Differential Kinematics 5.2.3 Analytic Jacobian for Inverse Differential Kinematics 5.2.4 Scara Robot (e.g., ABB IRB910SC) 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian 5.2.5 Puma Robot (e.g., ABB IRB120) 5.3 The Geometric Jacobian 5.3.1 Robot Spatial Geometric Jacobian 5.3.2 The Classical Adjoint Transformation (Ad) 5.3.3 Twist Velocity Concept 5.3.4 Trajectory Generation 5.3.5 Robot Tool Geometric Jacobian 5.3.6 Link Spatial and Link Tool Geometric Jacobian 5.3.7 The New Adjoint Transformation ( A ij) 5.3.8 General Solution to Differential Kinematics 5.3.8.1 The Kinematics Mapping 5.3.8.2 The Geometric Forward Differential Kinematics 5.3.8.3 The Geometric Inverse Differential Kinematics 5.3.9 Puma Robots (e.g., ABB IRB120) 5.3.9.1 Geometric Jacobian by Definition 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian 5.3.10 Puma Robots (e.g., ABB IRB120) “Tool-Up” 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) 5.3.13 Scara Robots (e.g., ABB IRB910SC) 5.3.13.1 Geometric Jacobian by Inspection 5.3.13.2 Geometric Jacobian by Definition 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) 5.3.15 Redundant Robots (e.g., KUKA IIWA) 5.4 Summary Notes Chapter 6: Inverse Dynamics 6.1 Problem Statement in Robotics 6.2 The Lagrange Characterization 6.2.1 General Non-Recursive Solution to Inverse Dynamics 6.2.2 Puma Robots (e.g., ABB IRB120) 6.2.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 6.2.4 Bending Backwards Robots (e.g., ABB IRB1600) 6.2.5 Gantry Robots (e.g., ABB IRB6620LX) 6.2.6 Scara Robots (e.g., ABB IRB910SC) 6.2.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 6.2.8 Redundant Robots (e.g., KUKA IIWA) 6.3 Robot Dynamics Control 6.3.1 Robotics Control in the Joint Space 6.3.2 Robotics Control in the Task Space 6.4 Spatial Vector Algebra 6.4.1 Coordinate Transforms 6.4.2 Mechanics of a Constrained Rigid Body System 6.5 The Newton–Euler Equations 6.5.1 General Recursive Solution to Inverse Dynamics RNEA with POE 6.5.2 Puma Robots (e.g., ABB IRB120) 6.5.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 6.5.4 Bending Backwards Robots (e.g., ABB IRB1600) 6.5.5 Gantry Robots (e.g., ABB IRB6620LX) 6.5.6 Scara Robots (e.g., ABB IRB910SC) 6.5.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 6.5.8 Redundant Robots (e.g., KUKA IIWA) 6.6 Summary Notes Chapter 7: Trajectory Generation 7.1 Concepts and Definitions 7.1.1 Point-to-Point Position Straight-line Trajectories 7.1.2 Trapezoidal Position Trajectory 7.1.3 Polynomial Position Trajectory 7.1.4 Spline Position Trajectory 7.1.5 Rotation Motion Trajectory 7.1.6 Trajectory Tracking and Control 7.2 Trajectory Planning 7.2.1 General Solution to Trajectory Generation 7.2.2 Puma Robots (e.g., ABB IRB120) 7.2.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 7.2.4 Bending Backwards Robots (e.g., ABB IRB1600) 7.2.5 Gantry Robots (e.g., ABB IRB6620LX) 7.2.6 Scara Robots (e.g., ABB IRB910SC) 7.2.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 7.2.8 Redundant Robots (e.g., KUKA IIWA) 7.3 Summary Notes Chapter 8: Robotics Simulation 8.1 Robotics Simulation 8.1.1 Why Code in MATLAB ® ? 8.2 Screw Theory Toolbox for Robotics (ST24R) 8.3 Forward Kinematics Simulations 8.3.1 General Solution to Forward Kinematics Simulation 8.3.2 Puma Robots (e.g., ABB IRB120) 8.3.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 8.3.4 Bending Backwards Robots (e.g., ABB IRB1600) 8.3.5 Gantry Robots (e.g., ABB IRB6620LX) 8.3.6 Scara Robots (e.g., ABB IRB910SC) 8.3.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 8.3.8 Redundant Robots (e.g., KUKA IIWA) 8.4 Inverse Kinematics Simulations 8.4.1 General Solution to Inverse Kinematics Simulation 8.4.2 Puma Robots (e.g., ABB IRB120) 8.4.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 8.4.4 Bending Backwards Robots (e.g., ABB IRB1600) 8.4.5 Gantry Robots (e.g., ABB IRB6620LX) 8.4.6 Scara Robots (e.g., ABB IRB910SC) 8.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 8.4.8 Redundant Robots (e.g., KUKA IIWA) 8.5 Differential Kinematics Simulations 8.5.1 General Solution to Differential Kinematics Simulation 8.5.2 Puma Robots (e.g., ABB IRB120) 8.5.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 8.5.4 Bending Backwards Robots (e.g., ABB IRB1600) 8.5.5 Gantry Robots (e.g., ABB IRB6620LX) 8.5.6 Scara Robots (e.g., ABB IRB910SC) 8.5.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 8.5.8 Redundant Robots (e.g., KUKA IIWA) 8.6 Inverse Dynamics Simulations 8.6.1 General Solution to ID Simulation 8.6.2 Puma Robots (e.g., ABB IRB120) 8.6.3 Puma Robots (e.g., ABB IRB120) “Tool-Up” 8.6.4 Bending Backwards Robots (e.g., ABB IRB1600) 8.6.5 Gantry Robots (e.g., ABB IRB6620LX) 8.6.6 Scara Robots (e.g., ABB IRB910SC) 8.6.7 Collaborative Robots (e.g., UNIVERSAL UR16e) 8.6.8 Redundant Robots (e.g., KUKA IIWA) 8.7 Summary Notes Chapter 9: Conclusions 9.1 Summary 9.1.1 Introduction 9.1.2 Mathematical Tools 9.1.3 Forward Kinematics 9.1.4 Inverse Kinematics 9.1.5 Differential Kinematics 9.1.6 Inverse Dynamics 9.1.7 Trajectory Generation 9.1.8 Robotics Simulation 9.2 Future Prospects Epigram References Index