دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نرم افزار: سیستم ها: محاسبات علمی ویرایش: 2 نویسندگان: Julian Avila سری: ISBN (شابک) : 9781787286382 ناشر: Packt Publishing سال نشر: 2017 تعداد صفحات: 0 زبان: English فرمت فایل : MOBI (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Scikit-Learn Cookbook: Over 80 Recipes for Machine Learning in Python With Scikit-Learn به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب آشپزی Scikit-Learn: بیش از 80 دستور العمل برای یادگیری ماشینی در پایتون با Scikit-Learn نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یاد بگیرید که از عملیات و عملکردهای Sikit-learn برای یادگیری ماشین و برنامه های کاربردی یادگیری عمیق استفاده کنید. درباره این کتاب* با استفاده از قدرت یادگیری scikit بدون دردسر انواع وظایف یادگیری ماشین را انجام دهید* یادگیری تحت نظارت و بدون نظارت را به راحتی انجام دهید و عملکرد را ارزیابی کنید. از مدل شما* دستور العمل های عملی و قابل درک با هدف کمک به شما در انتخاب الگوریتم یادگیری ماشینی مناسب چه کسی این کتاب ForData است تحلیلگران قبلاً با Python آشنا هستند اما نه چندان با scikit-learn، که می خواهند راه حل های سریعی برای مشکلات رایج یادگیری ماشین پیدا کنند. این کتاب بسیار مفید است اگر شما یک برنامه نویس پایتون هستید و می خواهید به روشی عملی وارد دنیای یادگیری ماشین شوید، این کتاب به شما نیز کمک خواهد کرد. روابط بین طبقهبندی و رگرسیون، دو نوع یادگیری نظارتشده.* از معیارهای فاصله برای پیشبینی در خوشهبندی، نوعی یادگیری بدون نظارت استفاده کنید. نقاطی را با ویژگیهای مشابه با نزدیکترین همسایگان پیدا کنید. روی آن برای یک محصول داده* از بین بهترین الگوریتم های بسیاری انتخاب کنید یا آنها را با هم در یک مجموعه استفاده کنید.* تخمینگر خود را با نحو ساده sklearn ایجاد کنید* شبکه های عصبی پیشخور را کاوش کنید که در scikit-learnIn DetailPython به سرعت در حال تبدیل شدن است. زبان پیشرو برای تحلیلگران و دانشمندان داده به دلیل سادگی و انعطاف پذیری آن، و در فضای داده پایتون، scikit-learn انتخابی بی چون و چرا برای یادگیری ماشینی است. ning این کتاب شامل راهحلها و راهحلهایی برای مشکلات رایج و نه چندان رایج در یادگیری ماشینی است، و اینکه چگونه میتوان از Sicit-Learn برای انجام مؤثر وظایف مختلف یادگیری ماشینی استفاده کرد. ویرایش دوم با آموزش دستورالعملهای مربوط به یادگیری ماشین آغاز میشود. ارزیابی ویژگی های آماری داده ها و تولید داده های مصنوعی برای مدل سازی یادگیری ماشین. با پیشرفت در فصلها، با دستور العملهایی مواجه میشوید که به شما میآموزد تکنیکهایی مانند پیشپردازش داده، رگرسیون خطی، رگرسیون لجستیک، K-NN، Naive Bayes، طبقهبندی، درختهای تصمیمگیری، گروهها و موارد دیگر را پیادهسازی کنید. علاوه بر این، میآموزید که مدلهای خود را با طبقهبندی چند کلاسه، اعتبارسنجی متقابل، ارزیابی مدل بهینه کنید و عمیقتر در پیادهسازی یادگیری عمیق با scikit-learn غواصی کنید. علاوه بر پوشش ویژگیهای بهبود یافته در بخش مدل، API و ویژگیهای جدید مانند طبقهبندیکننده، پسرونده و تخمینگر، این کتاب همچنین حاوی دستورالعملهایی برای ارزیابی و تنظیم دقیق عملکرد مدل شما است. در پایان این کتاب، شما مجموعهای از موارد را بررسی خواهید کرد. ویژگیهای ارائه شده توسط scikit-learn برای Python برای حل هر مشکل یادگیری ماشینی که با آن روبرو میشوید. سبک و رویکرد این کتاب شامل دستور العملهای عملی در مورد یادگیری scikit است که افراد مبتدی و همچنین کاربران متوسط را هدف قرار میدهد. این به عمق مسائل فنی می رود، پروتکل های اضافی و بسیاری از نمونه های واقعی دیگر را پوشش می دهد تا بتوانید آن را در سناریوهای زندگی روزمره خود پیاده سازی کنید.
Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.About This Book* Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn* Perform supervised and unsupervised learning with ease, and evaluate the performance of your model* Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithmWho This Book Is ForData Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.What You Will Learn* Build predictive models in minutes by using scikit-learn* Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.* Use distance metrics to predict in Clustering, a type of Unsupervised Learning* Find points with similar characteristics with Nearest Neighbors.* Use automation and cross-validation to find a best model and focus on it for a data product* Choose among the best algorithm of many or use them together in an ensemble.* Create your own estimator with the simple syntax of sklearn* Explore the feed-forward neural networks available in scikit-learnIn DetailPython is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.Style and ApproachThis book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.
Cover Copyright Credits About the Authors About the Reviewer www.PacktPub.com Customer Feedback Table of Contents Preface Chapter 1: High-Performance Machine Learning – NumPy Introduction NumPy basics How to do it... The shape and dimension of NumPy arrays NumPy broadcasting Initializing NumPy arrays and dtypes Indexing Boolean arrays Arithmetic operations NaN values How it works... Loading the iris dataset Getting ready How to do it... How it works... Viewing the iris dataset How to do it... How it works... There's more... Viewing the iris dataset with Pandas How to do it... How it works... Plotting with NumPy and matplotlib Getting ready How to do it... A minimal machine learning recipe – SVM classification Getting ready How to do it... How it works... There's more... Introducing cross-validation Getting ready How to do it... How it works... There's more... Putting it all together How to do it... There's more... Machine learning overview – classification versus regression The purpose of scikit-learn Supervised versus unsupervised Getting ready How to do it... Quick SVC – a classifier and regressor Making a scorer How it works... There's more... Linear versus nonlinear Black box versus not Interpretability A pipeline Chapter 2: Pre-Model Workflow and Pre-Processing Introduction Creating sample data for toy analysis Getting ready How to do it... Creating a regression dataset Creating an unbalanced classification dataset Creating a dataset for clustering How it works... Scaling data to the standard normal distribution Getting ready How to do it... How it works... Creating binary features through thresholding Getting ready How to do it... There's more... Sparse matrices The fit method Working with categorical variables Getting ready How to do it... How it works... There's more... DictVectorizer class Imputing missing values through various strategies Getting ready How to do it... How it works... There's more... A linear model in the presence of outliers Getting ready How to do it... How it works... Putting it all together with pipelines Getting ready How to do it... How it works... There's more... Using Gaussian processes for regression Getting ready How to do it… Cross-validation with the noise parameter There's more... Using SGD for regression Getting ready How to do it… How it works… Chapter 3: Dimensionality Reduction Introduction Reducing dimensionality with PCA Getting ready How to do it... How it works... There's more... Using factor analysis for decomposition Getting ready How to do it... How it works... Using kernel PCA for nonlinear dimensionality reduction Getting ready How to do it... How it works... Using truncated SVD to reduce dimensionality Getting ready How to do it... How it works... There's more... Sign flipping Sparse matrices Using decomposition to classify with DictionaryLearning Getting ready How to do it... How it works... Doing dimensionality reduction with manifolds – t-SNE Getting ready How to do it... How it works... Testing methods to reduce dimensionality with pipelines Getting ready How to do it... How it works... Chapter 4: Linear Models with scikit-learn Introduction Fitting a line through data Getting ready How to do it... How it works... There's more... Fitting a line through data with machine learning Getting ready How to do it... Evaluating the linear regression model Getting ready How to do it... How it works... There's more... Using ridge regression to overcome linear regression's shortfalls Getting ready How to do it... Optimizing the ridge regression parameter Getting ready How to do it... How it works... There's more... Bayesian ridge regression Using sparsity to regularize models Getting ready How to do it... How it works... LASSO cross-validation – LASSOCV LASSO for feature selection Taking a more fundamental approach to regularization with LARS Getting ready How to do it... How it works... There's more... References Chapter 5: Linear Models – Logistic Regression Introduction Using linear methods for classification – logistic regression Loading data from the UCI repository How to do it... Viewing the Pima Indians diabetes dataset with pandas How to do it... Looking at the UCI Pima Indians dataset web page How to do it... View the citation policy Read about missing values and context Machine learning with logistic regression Getting ready Define X, y – the feature and target arrays How to do it... Provide training and testing sets Train the logistic regression Score the logistic regression Examining logistic regression errors with a confusion matrix Getting ready How to do it... Reading the confusion matrix General confusion matrix in context Varying the classification threshold in logistic regression Getting ready How to do it... Receiver operating characteristic – ROC analysis Getting ready Sensitivity A visual perspective How to do it... Calculating TPR in scikit-learn Plotting sensitivity There's more... The confusion matrix in a non-medical context Plotting an ROC curve without context How to do it... Perfect classifier Imperfect classifier AUC – the area under the ROC curve Putting it all together – UCI breast cancer dataset How to do it... Outline for future projects Chapter 6: Building Models with Distance Metrics Introduction Using k-means to cluster data Getting ready How to do it… How it works... Optimizing the number of centroids Getting ready How to do it... How it works... Assessing cluster correctness Getting ready How to do it... There's more... Using MiniBatch k-means to handle more data Getting ready How to do it... How it works... Quantizing an image with k-means clustering Getting ready How do it… How it works… Finding the closest object in the feature space Getting ready How to do it... How it works... There's more... Probabilistic clustering with Gaussian mixture models Getting ready How to do it... How it works... Using k-means for outlier detection Getting ready How to do it... How it works... Using KNN for regression Getting ready How to do it… How it works.. Chapter 7: Cross-Validation and Post-Model Workflow Introduction Selecting a model with cross-validation Getting ready How to do it... How it works... K-fold cross validation Getting ready How to do it.. There's more... Balanced cross-validation Getting ready How to do it... There's more... Cross-validation with ShuffleSplit Getting ready How to do it... Time series cross-validation Getting ready How to do it... There's more... Grid search with scikit-learn Getting ready How to do it... How it works... Randomized search with scikit-learn Getting ready How to do it... Classification metrics Getting ready How to do it... There's more... Regression metrics Getting ready How to do it... Clustering metrics Getting ready How to do it... Using dummy estimators to compare results Getting ready How to do it... How it works... Feature selection Getting ready How to do it... How it works... Feature selection on L1 norms Getting ready How to do it... There's more... Persisting models with joblib or pickle Getting ready How to do it... Opening the saved model There's more... Chapter 8: Support Vector Machines Introduction Classifying data with a linear SVM Getting ready Load the data Visualize the two classes How to do it... How it works... There's more... Optimizing an SVM Getting ready How to do it... Construct a pipeline Construct a parameter grid for a pipeline Provide a cross-validation scheme Perform a grid search There's more... Randomized grid search alternative Visualize the nonlinear RBF decision boundary More meaning behind C and gamma Multiclass classification with SVM Getting ready How to do it... OneVsRestClassifier Visualize it How it works... Support vector regression Getting ready How to do it... Chapter 9: Tree Algorithms and Ensembles Introduction Doing basic classifications with decision trees Getting ready How to do it... Visualizing a decision tree with pydot How to do it... How it works... There's more... Tuning a decision tree Getting ready How to do it... There's more... Using decision trees for regression Getting ready How to do it... There's more... Reducing overfitting with cross-validation How to do it... There's more... Implementing random forest regression Getting ready How to do it... Bagging regression with nearest neighbors Getting ready How to do it... Tuning gradient boosting trees Getting ready How to do it... There's more... Finding the best parameters of a gradient boosting classifier Tuning an AdaBoost regressor How to do it... There's more... Writing a stacking aggregator with scikit-learn How to do it... Chapter 10: Text and Multiclass Classification with scikit-learn Using LDA for classification Getting ready How to do it... How it works... Working with QDA – a nonlinear LDA Getting ready How to do it... How it works... Using SGD for classification Getting ready How to do it... There's more... Classifying documents with Naive Bayes Getting ready How to do it... How it works... There's more... Label propagation with semi-supervised learning Getting ready How to do it... How it works... Chapter 11: Neural Networks Introduction Perceptron classifier Getting ready How to do it... How it works... There's more... Neural network – multilayer perceptron Getting ready How to do it... How it works... Philosophical thoughts on neural networks Stacking with a neural network Getting ready How to do it... First base model – neural network Second base model – gradient boost ensemble Third base model – bagging regressor of gradient boost ensembles Some functions of the stacker Meta-learner – extra trees regressor There's more... Chapter 12: Create a Simple Estimator Introduction Create a simple estimator Getting ready How to do it... How it works... There's more... Trying the new GEE classifier on the Pima diabetes dataset Saving your trained estimator Index