ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Scikit-Learn Cookbook: Over 80 Recipes for Machine Learning in Python With Scikit-Learn

دانلود کتاب کتاب آشپزی Scikit-Learn: بیش از 80 دستور العمل برای یادگیری ماشینی در پایتون با Scikit-Learn

Scikit-Learn Cookbook: Over 80 Recipes for Machine Learning in Python With Scikit-Learn

مشخصات کتاب

Scikit-Learn Cookbook: Over 80 Recipes for Machine Learning in Python With Scikit-Learn

دسته بندی: نرم افزار: سیستم ها: محاسبات علمی
ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9781787286382 
ناشر: Packt Publishing 
سال نشر: 2017 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : MOBI (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Scikit-Learn Cookbook: Over 80 Recipes for Machine Learning in Python With Scikit-Learn به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب آشپزی Scikit-Learn: بیش از 80 دستور العمل برای یادگیری ماشینی در پایتون با Scikit-Learn نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب آشپزی Scikit-Learn: بیش از 80 دستور العمل برای یادگیری ماشینی در پایتون با Scikit-Learn

یاد بگیرید که از عملیات و عملکردهای Sikit-learn برای یادگیری ماشین و برنامه های کاربردی یادگیری عمیق استفاده کنید. درباره این کتاب* با استفاده از قدرت یادگیری scikit بدون دردسر انواع وظایف یادگیری ماشین را انجام دهید* یادگیری تحت نظارت و بدون نظارت را به راحتی انجام دهید و عملکرد را ارزیابی کنید. از مدل شما* دستور العمل های عملی و قابل درک با هدف کمک به شما در انتخاب الگوریتم یادگیری ماشینی مناسب چه کسی این کتاب ForData است تحلیلگران قبلاً با Python آشنا هستند اما نه چندان با scikit-learn، که می خواهند راه حل های سریعی برای مشکلات رایج یادگیری ماشین پیدا کنند. این کتاب بسیار مفید است اگر شما یک برنامه نویس پایتون هستید و می خواهید به روشی عملی وارد دنیای یادگیری ماشین شوید، این کتاب به شما نیز کمک خواهد کرد. روابط بین طبقه‌بندی و رگرسیون، دو نوع یادگیری نظارت‌شده.* از معیارهای فاصله برای پیش‌بینی در خوشه‌بندی، نوعی یادگیری بدون نظارت استفاده کنید. نقاطی را با ویژگی‌های مشابه با نزدیک‌ترین همسایگان پیدا کنید. روی آن برای یک محصول داده* از بین بهترین الگوریتم های بسیاری انتخاب کنید یا آنها را با هم در یک مجموعه استفاده کنید.* تخمینگر خود را با نحو ساده sklearn ایجاد کنید* شبکه های عصبی پیشخور را کاوش کنید که در scikit-learnIn DetailPython به سرعت در حال تبدیل شدن است. زبان پیشرو برای تحلیلگران و دانشمندان داده به دلیل سادگی و انعطاف پذیری آن، و در فضای داده پایتون، scikit-learn انتخابی بی چون و چرا برای یادگیری ماشینی است. ning این کتاب شامل راه‌حل‌ها و راه‌حل‌هایی برای مشکلات رایج و نه چندان رایج در یادگیری ماشینی است، و اینکه چگونه می‌توان از Sicit-Learn برای انجام مؤثر وظایف مختلف یادگیری ماشینی استفاده کرد. ویرایش دوم با آموزش دستورالعمل‌های مربوط به یادگیری ماشین آغاز می‌شود. ارزیابی ویژگی های آماری داده ها و تولید داده های مصنوعی برای مدل سازی یادگیری ماشین. با پیشرفت در فصل‌ها، با دستور العمل‌هایی مواجه می‌شوید که به شما می‌آموزد تکنیک‌هایی مانند پیش‌پردازش داده، رگرسیون خطی، رگرسیون لجستیک، K-NN، Naive Bayes، طبقه‌بندی، درخت‌های تصمیم‌گیری، گروه‌ها و موارد دیگر را پیاده‌سازی کنید. علاوه بر این، می‌آموزید که مدل‌های خود را با طبقه‌بندی چند کلاسه، اعتبارسنجی متقابل، ارزیابی مدل بهینه کنید و عمیق‌تر در پیاده‌سازی یادگیری عمیق با scikit-learn غواصی کنید. علاوه بر پوشش ویژگی‌های بهبود یافته در بخش مدل، API و ویژگی‌های جدید مانند طبقه‌بندی‌کننده، پس‌رونده و تخمین‌گر، این کتاب همچنین حاوی دستورالعمل‌هایی برای ارزیابی و تنظیم دقیق عملکرد مدل شما است. در پایان این کتاب، شما مجموعه‌ای از موارد را بررسی خواهید کرد. ویژگی‌های ارائه شده توسط scikit-learn برای Python برای حل هر مشکل یادگیری ماشینی که با آن روبرو می‌شوید. سبک و رویکرد این کتاب شامل دستور العمل‌های عملی در مورد یادگیری scikit است که افراد مبتدی و همچنین کاربران متوسط ​​را هدف قرار می‌دهد. این به عمق مسائل فنی می رود، پروتکل های اضافی و بسیاری از نمونه های واقعی دیگر را پوشش می دهد تا بتوانید آن را در سناریوهای زندگی روزمره خود پیاده سازی کنید.


توضیحاتی درمورد کتاب به خارجی

Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.About This Book* Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn* Perform supervised and unsupervised learning with ease, and evaluate the performance of your model* Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithmWho This Book Is ForData Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.What You Will Learn* Build predictive models in minutes by using scikit-learn* Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.* Use distance metrics to predict in Clustering, a type of Unsupervised Learning* Find points with similar characteristics with Nearest Neighbors.* Use automation and cross-validation to find a best model and focus on it for a data product* Choose among the best algorithm of many or use them together in an ensemble.* Create your own estimator with the simple syntax of sklearn* Explore the feed-forward neural networks available in scikit-learnIn DetailPython is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.Style and ApproachThis book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.



فهرست مطالب

Cover
Copyright
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Table of Contents
Preface
Chapter 1: High-Performance Machine Learning – NumPy
	Introduction
	NumPy basics
		How to do it...
			The shape and dimension of NumPy arrays
			NumPy broadcasting
			Initializing NumPy arrays and dtypes
			Indexing
			Boolean arrays
			Arithmetic operations
			NaN values
		How it works...
	Loading the iris dataset
		Getting ready
		How to do it...
		How it works...
	Viewing the iris dataset
		How to do it...
		How it works...
		There's more...
	Viewing the iris dataset with Pandas
		How to do it...
		How it works...
	Plotting with NumPy and matplotlib
		Getting ready
		How to do it...
	A minimal machine learning recipe – SVM classification
		Getting ready
		How to do it...
		How it works...
		There's more...
	Introducing cross-validation
		Getting ready
		How to do it...
		How it works...
		There's more...
	Putting it all together
		How to do it...
		There's more...
	Machine learning overview – classification versus regression
		The purpose of scikit-learn
			Supervised versus unsupervised
		Getting ready
		How to do it...
			Quick SVC – a classifier and regressor
			Making a scorer
		How it works...
		There's more...
			Linear versus nonlinear
			Black box versus not
				Interpretability
			A pipeline
Chapter 2: Pre-Model Workflow and Pre-Processing
	Introduction
	Creating sample data for toy analysis
		Getting ready
		How to do it...
			Creating a regression dataset
			Creating an unbalanced classification dataset
			Creating a dataset for clustering
		How it works...
	Scaling data to the standard normal distribution
		Getting ready
		How to do it...
		How it works...
	Creating binary features through thresholding
		Getting ready
		How to do it...
		There's more...
			Sparse matrices
			The fit method
	Working with categorical variables
		Getting ready
		How to do it...
		How it works...
		There's more...
			DictVectorizer class
	Imputing missing values through various strategies
		Getting ready
		How to do it...
		How it works...
		There's more...
	A linear model in the presence of outliers
		Getting ready
		How to do it...
		How it works...
	Putting it all together with pipelines
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using Gaussian processes for regression
		Getting ready
		How to do it…
			Cross-validation with the noise parameter
		There's more...
	Using SGD for regression
		Getting ready
		How to do it…
		How it works…
Chapter 3: Dimensionality Reduction
	Introduction
	Reducing dimensionality with PCA
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using factor analysis for decomposition
		Getting ready
		How to do it...
		How it works...
	Using kernel PCA for nonlinear dimensionality reduction
		Getting ready
		How to do it...
		How it works...
	Using truncated SVD to reduce dimensionality
		Getting ready
		How to do it...
		How it works...
		There's more...
			Sign flipping
			Sparse matrices
	Using decomposition to classify with DictionaryLearning
		Getting ready
		How to do it...
		How it works...
	Doing dimensionality reduction with manifolds – t-SNE
		Getting ready
		How to do it...
		How it works...
	Testing methods to reduce dimensionality with pipelines
		Getting ready
		How to do it...
		How it works...
Chapter 4: Linear Models with scikit-learn
	Introduction
	Fitting a line through data
		Getting ready
		How to do it...
		How it works...
		There's more...
	Fitting a line through data with machine learning
		Getting ready
		How to do it...
	Evaluating the linear regression model
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using ridge regression to overcome linear regression's shortfalls
		Getting ready
		How to do it...
	Optimizing the ridge regression parameter
		Getting ready
		How to do it...
		How it works...
		There's more...
			Bayesian ridge regression
	Using sparsity to regularize models
		Getting ready
		How to do it...
		How it works...
			LASSO cross-validation – LASSOCV
				LASSO for feature selection
	Taking a more fundamental approach to regularization with LARS
		Getting ready
		How to do it...
		How it works...
		There's more...
	References
Chapter 5: Linear Models – Logistic Regression
	Introduction
		Using linear methods for classification – logistic regression
	Loading data from the UCI repository
		How to do it...
	Viewing the Pima Indians diabetes dataset with pandas
		How to do it...
	Looking at the UCI Pima Indians dataset web page
		How to do it...
			View the citation policy
			Read about missing values and context
	Machine learning with logistic regression
		Getting ready
			Define X, y – the feature and target arrays
		How to do it...
			Provide training and testing sets
			Train the logistic regression
			Score the logistic regression
	Examining logistic regression errors with a confusion matrix
		Getting ready
		How to do it...
			Reading the confusion matrix
			General confusion matrix in context
	Varying the classification threshold in logistic regression
		Getting ready
		How to do it...
	Receiver operating characteristic – ROC analysis
		Getting ready
			Sensitivity
			A visual perspective
		How to do it...
			Calculating TPR in scikit-learn
			Plotting sensitivity
		There's more...
			The confusion matrix in a non-medical context
	Plotting an ROC curve without context
		How to do it...
			Perfect classifier
			Imperfect classifier
			AUC – the area under the ROC curve
	Putting it all together – UCI breast cancer dataset
		How to do it...
			Outline for future projects
Chapter 6: Building Models with Distance Metrics
	Introduction
	Using k-means to cluster data
		Getting ready
		How to do it…
		How it works...
	Optimizing the number of centroids
		Getting ready
		How to do it...
		How it works...
	Assessing cluster correctness
		Getting ready
		How to do it...
		There's more...
	Using MiniBatch k-means to handle more data
		Getting ready
		How to do it...
		How it works...
	Quantizing an image with k-means clustering
		Getting ready
		How do it…
		How it works…
	Finding the closest object in the feature space
		Getting ready
		How to do it...
		How it works...
		There's more...
	Probabilistic clustering with Gaussian mixture models
		Getting ready
		How to do it...
		How it works...
	Using k-means for outlier detection
		Getting ready
		How to do it...
		How it works...
	Using KNN for regression
		Getting ready
		How to do it…
		How it works..
Chapter 7: Cross-Validation and Post-Model Workflow
	Introduction
	Selecting a model with cross-validation
		Getting ready
		How to do it...
		How it works...
	K-fold cross validation
		Getting ready
		How to do it..
		There's more...
	Balanced cross-validation
		Getting ready
		How to do it...
		There's more...
	Cross-validation with ShuffleSplit
		Getting ready
		How to do it...
	Time series cross-validation
		Getting ready
		How to do it...
		There's more...
	Grid search with scikit-learn
		Getting ready
		How to do it...
		How it works...
	Randomized search with scikit-learn
		Getting ready
		How to do it...
	Classification metrics
		Getting ready
		How to do it...
		There's more...
	Regression metrics
		Getting ready
		How to do it...
	Clustering metrics
		Getting ready
		How to do it...
	Using dummy estimators to compare results
		Getting ready
		How to do it...
		How it works...
	Feature selection
		Getting ready
		How to do it...
		How it works...
	Feature selection on L1 norms
		Getting ready
		How to do it...
		There's more...
	Persisting models with joblib or pickle
		Getting ready
		How to do it...
			Opening the saved model
		There's more...
Chapter 8: Support Vector Machines
	Introduction
	Classifying data with a linear SVM
		Getting ready
			Load the data
			Visualize the two classes
		How to do it...
		How it works...
		There's more...
	Optimizing an SVM
		Getting ready
		How to do it...
			Construct a pipeline
			Construct a parameter grid for a pipeline
			Provide a cross-validation scheme
			Perform a grid search
		There's more...
			Randomized grid search alternative
			Visualize the nonlinear RBF decision boundary
			More meaning behind C and gamma
	Multiclass classification with SVM
		Getting ready
		How to do it...
			OneVsRestClassifier
			Visualize it
		How it works...
	Support vector regression
		Getting ready
		How to do it...
Chapter 9: Tree Algorithms and Ensembles
	Introduction
	Doing basic classifications with decision trees
		Getting ready
		How to do it...
	Visualizing a decision tree with pydot
		How to do it...
		How it works...
		There's more...
	Tuning a decision tree
		Getting ready
		How to do it...
		There's more...
	Using decision trees for regression
		Getting ready
		How to do it...
		There's more...
	Reducing overfitting with cross-validation
		How to do it...
		There's more...
	Implementing random forest regression
		Getting ready
		How to do it...
	 Bagging regression with nearest neighbors
		Getting ready
		How to do it...
	Tuning gradient boosting trees
		Getting ready
		How to do it...
		There's more...
			Finding the best parameters of a gradient boosting classifier
	Tuning an AdaBoost regressor
		How to do it...
		There's more...
	Writing a stacking aggregator with scikit-learn
		How to do it...
Chapter 10: Text and Multiclass Classification with scikit-learn
	Using LDA for classification
		Getting ready
		How to do it...
		How it works...
	Working with QDA – a nonlinear LDA
		Getting ready
		How to do it...
		How it works...
	Using SGD for classification
		Getting ready
		How to do it...
		There's more...
	Classifying documents with Naive Bayes
		Getting ready
		How to do it...
		How it works...
		There's more...
	Label propagation with semi-supervised learning
		Getting ready
		How to do it...
		How it works...
Chapter 11: Neural Networks
	Introduction
	Perceptron classifier
		Getting ready
		How to do it...
		How it works...
		There's more...
	Neural network – multilayer perceptron
		Getting ready
		How to do it...
		How it works...
			Philosophical thoughts on neural networks
	Stacking with a neural network
		Getting ready
		How to do it...
			First base model – neural network
			Second base model – gradient boost ensemble
			Third base model – bagging regressor of gradient boost ensembles
			Some functions of the stacker
			Meta-learner – extra trees regressor
		There's more...
Chapter 12: Create a Simple Estimator
	Introduction
	Create a simple estimator
		Getting ready
		How to do it...
		How it works...
		There's more...
			Trying the new GEE classifier on the Pima diabetes dataset
			Saving your trained estimator
Index




نظرات کاربران