دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Fourth ed.] نویسندگان: Murray R. Spiegel, Robert E. Moyer سری: ISBN (شابک) : 0071821813, 9780071821810 ناشر: McGraw-Hill Education سال نشر: 2014 تعداد صفحات: 388 [405] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Schaum's Outline of College Algebra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طرح کلی شاوم از جبر کالج نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Chapter 1 Fundamental Operations with Numbers 1.1 Four Operations 1.2 System of Real Numbers 1.3 Graphical Representation of Real Numbers 1.4 Properties of Addition and Multiplication of Real Numbers 1.5 Rules of Signs 1.6 Exponents and Powers 1.7 Operations with Fractions Chapter 2 Fundamental Operations with Algebraic Expressions 2.1 Algebraic Expressions 2.2 Terms 2.3 Degree 2.4 Grouping 2.5 Computation with Algebraic Expressions Chapter 3 Properties of Numbers 3.1 Sets of Numbers 3.2 Properties 3.3 Additional Properties Chapter 4 Special Products 4.1 Special Products 4.2 Products Yielding Answers of the Form a[sup(n)]+b[sup(n)] Chapter 5 Factoring 5.1 Factoring 5.2 Factorization Procedures 5.3 Greatest Common Factor 5.4 Least Common Multiple Chapter 6 Fractions 6.1 Rational Algebraic Fractions 6.2 Operations with Algebraic Fractions 6.3 Complex Fractions Chapter 7 Exponents 7.1 Positive Integral Exponent 7.2 Negative Integral Exponent 7.3 Roots 7.4 Rational Exponents 7.5 General Laws of Exponents 7.6 Scientific Notation Chapter 8 Radicals 8.1 Radical Expressions 8.2 Laws for Radicals 8.3 Simplifying Radicals 8.4 Operations with Radicals 8.5 Rationalizing Binomial Denominators Chapter 9 Simple Operations with Complex Numbers 9.1 Complex Numbers 9.2 Graphical Representation of Complex Numbers 9.3 Algebraic Operations with Complex Numbers Chapter 10 Equations in General 10.1 Equations 10.2 Operations Used in Transforming Equations 10.3 Equivalent Equations 10.4 Formulas 10.5 Polynomial Equations Chapter 11 Ratio, Proportion, and Variation 11.1 Ratio 11.2 Proportion 11.3 Variation 11.4 Unit Price 11.5 Best Buy Chapter 12 Functions and Graphs 12.1 Variables 12.2 Relations 12.3 Functions 12.4 Function Notation 12.5 Rectangular Coordinate System 12.6 Function of Two Variables 12.7 Symmetry 12.8 Shifts 12.9 Scaling 12.10 Using a Graphing Calculator Chapter 13 Linear Equations in One Variable 13.1 Linear Equations 13.2 Literal Equations 13.3 Word Problems Chapter 14 Equations of Lines 14.1 Slope of a Line 14.2 Parallel and Perpendicular Lines 14.3 Slope–Intercept form of Equation of a Line 14.4 Slope–Point Form of Equation of a Line 14.5 Two-Point Form of Equation of a Line 14.6 Intercept Form of Equation of a Line Chapter 15 Simultaneous Linear Equations 15.1 Systems of Two Linear Equations 15.2 Systems of Three Linear Equations Chapter 16 Quadratic Equations in One Variable 16.1 Quadratic Equations 16.2 Methods of Solving Quadratic Equations 16.3 Sum and Product of the Roots 16.4 Nature of the Roots 16.5 Radical Equations 16.6 Quadratic-type Equations Chapter 17 Conic Sections 17.1 General Quadratic Equations 17.2 Conic Sections 17.3 Circles 17.4 Parabolas 17.5 Ellipses 17.6 Hyperbolas 17.7 Graphing Conic Sections with a Calculator Chapter 18 Systems of Equations Involving Quadratics 18.1 Graphical Solution 18.2 Algebraic Solution Chapter 19 Inequalities 19.1 Definitions 19.2 Principles of Inequalities 19.3 Absolute Value Inequalities 19.4 Higher Degree Inequalities 19.5 Linear Inequalities in Two Variables 19.6 Systems of Linear Inequalities 19.7 Linear Programming Chapter 20 Polynomial Functions 20.1 Polynomial Equations 20.2 Zeros of Polynomial Equations 20.3 Solving Polynomial Equations 20.4 Approximating Real Zeros Chapter 21 Rational Functions 21.1 Rational Functions 21.2 Vertical Asymptotes 21.3 Horizontal Asymptotes 21.4 Graphing Rational Functions 21.5 Graphing Rational Functions using a Graphing Calculator Chapter 22 Sequences and Series 22.1 Sequences 22.2 Arithmetic Sequences 22.3 Geometric Sequences 22.4 Infinite Geometric Series 22.5 Harmonic Sequences 22.6 Means Chapter 23 Logarithms 23.1 Definition of a Logarithm 23.2 Laws of Logarithms 23.3 Common Logarithms 23.4 Using a Common Logarithm Table 23.5 Natural Logarithms 23.6 Using a Natural Logarithm Table 23.7 Finding Logarithms Using a Calculator Chapter 24 Applications of Logarithms and Exponents 24.1 Introduction 24.2 Simple Interest 24.3 Compound Interest 24.4 Applications of Logarithms 24.5 Applications of Exponents Chapter 25 Permutations and Combinations 25.1 Fundamental Counting Principle 25.2 Permutations 25.3 Combinations 25.4 Using a Calculator Chapter 26 The Binomial Theorem 26.1 Combinatorial Notation 26.2 Expansion of (a+x)[sup(n)] Chapter 27 Probability 27.1 Simple Probability 27.2 Compound Probability 27.3 Mathematical Expectation 27.4 Binomial Probability 27.5 Conditional Probability Chapter 28 Determinants 28.1 Determinants of Second Order 28.2 Cramer’s Rule 28.3 Determinants of Third Order 28.4 Determinants of Order n 28.5 Properties of Determinants 28.6 Minors 28.7 Value of a Determinant of Order n 28.8 Cramer’s Rule for Determinants of Order n 28.9 Homogeneous Linear Equations Chapter 29 Matrices 29.1 Definition of a Matrix 29.2 Operations With Matrices 29.3 Elementary Row Operations 29.4 Inverse of a Matrix 29.5 Matrix Equations 29.6 Matrix Solution of a System of Equations Chapter 30 Mathematical Induction 30.1 Principle of Mathematical Induction 30.2 Proof by Mathematical Induction Chapter 31 Partial Fractions 31.1 Rational Fractions 31.2 Proper Fractions 31.3 Partial Fractions 31.4 Identically Equal Polynomials 31.5 Fundamental Theorem 31.6 Finding the Partial Fraction Decomposition Appendix A: Table of Common Logarithms Appendix B: Table of Natural Logarithms Index A B C D E F G H I L M N O P Q R S T U V Z