دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Murray Spiegel
سری: Schaum's Outline Series
ISBN (شابک) : 0071635408, 9780071635400
ناشر: McGraw-Hill
سال نشر: 2009
تعداد صفحات: 417
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Schaum's Outline of Advanced Mathematics for Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رئوس مطالب ریاضیات پیشرفته شوم برای مهندسان و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای قبولی در امتحانات کالج مهندسی (فنی) مفید است، اما هیچ چیز در اینجا پیشرفت نکرده است. برای تصویر دقیق به محتوا نگاه کنید.
Helpful in passing engineering (technical) college exams, but nothing advanced here. Look at contents for the exact picture.
Contents.................................................................. 7 Chapter 1 Review of Fundamental Concepts.................................. 11 Real Numbers.......................................................... 11 Rules of Algebra...................................................... 11 Functions............................................................. 12 Special Types of Functions............................................ 12 Limits................................................................ 13 Continuity............................................................ 14 Derivatives........................................................... 14 Differentiation Formulas.............................................. 14 Integrals............................................................. 15 Integration Formulas.................................................. 15 Sequences and Series.................................................. 16 Uniform Convergence................................................... 17 Taylor Series......................................................... 18 Functions of Two or More Variables.................................... 18 Partial Derivatives................................................... 18 Taylor Series for Functions of Two or More Variables.................. 19 Linear Equations and Determinants..................................... 19 Maxima and Minima..................................................... 21 Method of Lagrange Multipliers........................................ 21 Leibnitz\'s Rule for Differentiating an Integral....................... 21 Multiple Integrals.................................................... 21 Complex Numbers....................................................... 21 Chapter 2 Ordinary Differential Equations................................. 48 Definition of a differential equation................................. 48 Order of a differential equation...................................... 48 Arbitrary Constants................................................... 48 Solution of a Differential Equation................................... 48 Differential Equation of a Family of Curves........................... 49 Special First Order Equations and Solutions........................... 49 Equations of Higher Order............................................. 51 Existence and Uniqueness of Solutions................................. 51 Applications of Differential Equations................................ 51 Some Special Applications............................................. 52 Mechanics......................................................... 52 Electric Circuits................................................. 52 Orthogonal Trajectories........................................... 53 Deflection of Beams............................................... 53 Miscellaneous Problems............................................ 53 Numerical Methods for Solving Differential Equations.................. 53 Chapter 3 Linear Differential Equations................................... 81 General Linear Differential Equation of Order n....................... 81 Existence and Uniqueness Theorem...................................... 81 Operator Notation..................................................... 81 Linear Operators...................................................... 82 Fundamental Theorem on Linear differential Equations.................. 82 Linear Dependence and Wronskians...................................... 82 Solutions of Linear Equations with Constant Coefficients.............. 83 Non-Operator Techniques............................................... 83 The Complementary or Homogeneous Solution......................... 83 The Particular Solution........................................... 83 Operator Techniques................................................... 85 Method of Reduction of Order...................................... 85 Method of Inverse Operators....................................... 85 Linear Equations with Variable Coefficients........................... 86 Simultaneous Differential Equations................................... 87 Applications.......................................................... 87 Chapter 4 Laplace Transforms..............................................108 Definition of a Laplace Transform.....................................108 Laplace Transforms of Some Elementary Functions.......................108 Sufficient Conditions for Existence of Laplace Transforms.............109 Inverse Laplace Transforms............................................109 Laplace Transforms of Derivatives.....................................110 The Unit Step Function................................................110 Some Special Theorems on Laplace Transforms...........................111 Partial Fractions.....................................................112 Solutions of Differential Equations by Laplace Transforms.............112 Applications to Physical Problems.....................................112 Laplace Inversion Formulas............................................112 Chapter 5 Vector Analysis.................................................131 Vectors and Scalars...................................................131 Vector Algebra........................................................131 Laws of Vector Algebra................................................132 Unit Vectors..........................................................132 Rectangular Unit Vectors..............................................132 Components of a Vector................................................133 Dot or Scalar Product.................................................133 Cross or Vector Product...............................................134 Triple Products.......................................................134 Vector Functions......................................................135 Limits, Continuity and Derivatives of Vector Functions................135 Geometric Interpretation of a Vector Derivative.......................136 Gradient, Divergence and Curl.........................................136 Formulas Involving V..................................................137 Orthogonal Curvilinear Coordinates. Jacobians.........................137 Gradient, Divergence, Curl and Laplacian in Orthogonal Curvilinear....138 Special Curvilinear Coordinates.......................................139 Chapter 6 Multiple, Line and Surface Integrals and Integral Theorems......157 Double Integrals......................................................157 Iterated Integrals....................................................157 Triple Integrals......................................................158 Transformations of Multiple Integrals.................................158 Line Integrals........................................................159 Vector Notation for Line Integrals....................................160 Evaluation of Line Integrals..........................................160 Properties of Line Integrals..........................................161 Simple Closed Curves. Simply and Multiply-Connected Regions...........161 Green\'s Theorem in the Plane..........................................161 Conditions for a Line Integral to be Independent of the Path..........162 Surface Integrals.....................................................163 The Divergence Theorem................................................164 Stokes\' Theorem.......................................................164 Chapter 7 Fourier Series..................................................192 Periodic Functions....................................................192 Fourier Series........................................................192 Dirichlet Conditions..................................................193 Odd and Even Functions................................................193 Half Range Fourier Sine or Cosine Series..............................193 Parseval\'s Identity...................................................194 Differentiation and Integration of Fourier Series.....................194 Complex Notation for Fourier Series...................................194 Orthogonal Functions..................................................194 Chapter 8 Fourier Integrals...............................................211 The Fourier Integral..................................................211 Equivalent forms of Fourier\'s Integral Theorem........................211 Fourier Transforms....................................................212 Parseval\'s Identities for Fourier Integrals...........................212 The Convolution Theorem...............................................213 Chapter 9 Gamma, Beta and Other Special Functions.........................220 The Gamma Function....................................................220 Table of Values and Graph of the Gamma Function.......................220 Asymptotic Formula for T(n)...........................................221 Miscellaneous Results Involving the Gamma Function....................221 The Beta Function.....................................................221 Dirichlet Integrals...................................................222 Other Special Functions...............................................222 Error Function....................................................222 Exponential Integral..............................................222 Sine Integral.....................................................222 Cosine Integral...................................................222 Fresnel Sine Integral.............................................222 Fresnel Cosine Integral...........................................222 Asymptotic Series or Expansions.......................................222 Chapter 10 Bessel Functions...............................................234 Bessel\'s Differential Equation........................................234 Bessel Functions of the First Kind....................................234 Bessel Functions of the Second Kind...................................235 Generating Function for J[sub(n)](x)..................................235 Recurrence Formulas...................................................235 Functions Related to Bessel Functions.................................236 Hankel Functions of First and Second Kinds........................236 Modified Bessel Functions.........................................236 Ber, Bei, Ker, Kei Functions......................................236 Equations Transformed into Bessel\'s Equation..........................236 Asymptotic Formulas for Bessel Functions..............................237 Zeros of Bessel Functions.............................................237 Orthogonality of Bessel Functions.....................................237 Series of Bessel Functions............................................237 Chapter 11 Legendre Functions and Other Orthogonal Functions..............252 Legendre\'s Differential Equation......................................252 Legendre Polynomials..................................................252 Generating Function for Legendre Polynomials..........................252 Recurrence Formulas...................................................252 Legendre Functions of the Second Kind.................................253 Orthogonality of Legendre Polynomials.................................253 Series of Legendre Polynomials........................................253 Associated Legendre Functions.........................................253 Other Special Functions...............................................254 Hermite Polynomials...............................................254 Laguerre Polynomials..............................................254 Sturm-Liouville Systems...............................................255 Chapter 12 Partial Differential Equations.................................268 Some Definitions Involving Partial Differential Equations.............268 Linear Partial Differential Equations.................................268 Some Important Partial Differential Equations.........................269 Heat Conduction Equation..........................................269 Vibrating String Equation.........................................269 Laplace\'s Equation................................................269 Longitudinal Vibrations of a Beam.................................269 Transverse Vibrations of a Beam...................................270 Methods of Solving Boundary-Value Problems............................270 General Solutions.................................................270 Separation of Variables...........................................270 Laplace Transform Methods.........................................271 Chapter 13 Complex Variables and Conformal Mapping........................296 Functions.............................................................296 Limits and Continuity.................................................296 Derivatives...........................................................296 Cauchy-Riemann Equations..............................................297 Integrals.............................................................297 Cauchy\'s Theorem......................................................297 Cauchy\'s Integral Formulas............................................298 Taylor\'s Series.......................................................298 Singular Points.......................................................298 Poles.................................................................298 Laurent\'s Series......................................................299 Residues..............................................................299 Residue Theorem.......................................................299 Evaluation of Definite Integrals......................................300 Conformai Mapping.....................................................301 Riemann\'s Mapping Theorem.............................................301 Some General Transformations..........................................302 Mapping of a Half Plane on to a Circle................................302 The Schwarz-Christoffel Transformation................................303 Solutions of Laplace\'s Equation by Conformal Mapping..................303 Chapter 14 Complex Inversion Formula for Laplace Transforms...............334 The Complex Inversion Formula.........................................334 The Bromwich Contour..................................................334 Use of Residue Theorem in Finding Inverse Laplace Transforms..........334 A Sufficient Condition for the Integral Around T to Approach Zero.....335 Modification of Bromwich Contour in Case of Branch Points.............335 Case of Infinitely Many Singularities.................................335 Applications to Boundary-Value Problems...............................335 Chapter 15 Matrices.......................................................352 Definition of a Matrix................................................352 Some Special Definitions and Operations Involving Matrices............352 Determinants..........................................................354 Theorems on Determinants..............................................355 Inverse of a Matrix...................................................356 Orthogonal and Unitary Matrices.......................................356 Orthogonal Vectors....................................................356 Systems of linear Equations...........................................357 Systems of n Equations in n Unknowns. Cramer\'s Rule...................357 Eigenvalues and Eigenvectors..........................................358 Theorems on Eigenvalues and Eigenvectors..............................359 Chapter 16 Calculus of Variations.........................................385 Maximum or Minimum of an Integral.....................................385 Euler\'s Equation......................................................385 Constraints...........................................................386 The Variational Notation..............................................386 Generalizations.......................................................387 Hamilton\'s Principle..................................................387 Lagrange\'s Equations..................................................388 Sturm-Liouville Systems and Rayleigh-Ritz Methods.....................388 Index.....................................................................409 A.....................................................................409 B.....................................................................409 C.....................................................................409 D.....................................................................410 E.....................................................................411 F.....................................................................411 G.....................................................................412 H.....................................................................412 I.....................................................................412 J.....................................................................413 K.....................................................................413 L.....................................................................413 M.....................................................................413 N.....................................................................414 O.....................................................................414 P.....................................................................414 Q.....................................................................415 R.....................................................................415 S.....................................................................415 T.....................................................................416 U.....................................................................417 V.....................................................................417 W.....................................................................417 X.....................................................................417 Y.....................................................................417 Z.....................................................................417