ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Schaum's Outline of Advanced Mathematics for Engineers and Scientists

دانلود کتاب رئوس مطالب ریاضیات پیشرفته شوم برای مهندسان و دانشمندان

Schaum's Outline of Advanced Mathematics for Engineers and Scientists

مشخصات کتاب

Schaum's Outline of Advanced Mathematics for Engineers and Scientists

ویرایش: 1 
نویسندگان:   
سری: Schaum's Outline Series 
ISBN (شابک) : 0071635408, 9780071635400 
ناشر: McGraw-Hill 
سال نشر: 2009 
تعداد صفحات: 417 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Schaum's Outline of Advanced Mathematics for Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رئوس مطالب ریاضیات پیشرفته شوم برای مهندسان و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رئوس مطالب ریاضیات پیشرفته شوم برای مهندسان و دانشمندان

برای قبولی در امتحانات کالج مهندسی (فنی) مفید است، اما هیچ چیز در اینجا پیشرفت نکرده است. برای تصویر دقیق به محتوا نگاه کنید.


توضیحاتی درمورد کتاب به خارجی

Helpful in passing engineering (technical) college exams, but nothing advanced here. Look at contents for the exact picture.



فهرست مطالب

Contents..................................................................  7
Chapter 1 Review of Fundamental Concepts.................................. 11
 Real Numbers.......................................................... 11
 Rules of Algebra...................................................... 11
 Functions............................................................. 12
 Special Types of Functions............................................ 12
 Limits................................................................ 13
 Continuity............................................................ 14
 Derivatives........................................................... 14
 Differentiation Formulas.............................................. 14
 Integrals............................................................. 15
 Integration Formulas.................................................. 15
 Sequences and Series.................................................. 16
 Uniform Convergence................................................... 17
 Taylor Series......................................................... 18
 Functions of Two or More Variables.................................... 18
 Partial Derivatives................................................... 18
 Taylor Series for Functions of Two or More Variables.................. 19
 Linear Equations and Determinants..................................... 19
 Maxima and Minima..................................................... 21
 Method of Lagrange Multipliers........................................ 21
 Leibnitz\'s Rule for Differentiating an Integral....................... 21
 Multiple Integrals.................................................... 21
 Complex Numbers....................................................... 21
Chapter 2 Ordinary Differential Equations................................. 48
 Definition of a differential equation................................. 48
 Order of a differential equation...................................... 48
 Arbitrary Constants................................................... 48
 Solution of a Differential Equation................................... 48
 Differential Equation of a Family of Curves........................... 49
 Special First Order Equations and Solutions........................... 49
 Equations of Higher Order............................................. 51
 Existence and Uniqueness of Solutions................................. 51
 Applications of Differential Equations................................ 51
 Some Special Applications............................................. 52
  Mechanics......................................................... 52
  Electric Circuits................................................. 52
  Orthogonal Trajectories........................................... 53
  Deflection of Beams............................................... 53
  Miscellaneous Problems............................................ 53
 Numerical Methods for Solving Differential Equations.................. 53
Chapter 3 Linear Differential Equations................................... 81
 General Linear Differential Equation of Order n....................... 81
 Existence and Uniqueness Theorem...................................... 81
 Operator Notation..................................................... 81
 Linear Operators...................................................... 82
 Fundamental Theorem on Linear differential Equations.................. 82
 Linear Dependence and Wronskians...................................... 82
 Solutions of Linear Equations with Constant Coefficients.............. 83
 Non-Operator Techniques............................................... 83
  The Complementary or Homogeneous Solution......................... 83
  The Particular Solution........................................... 83
 Operator Techniques................................................... 85
  Method of Reduction of Order...................................... 85
  Method of Inverse Operators....................................... 85
 Linear Equations with Variable Coefficients........................... 86
 Simultaneous Differential Equations................................... 87
 Applications.......................................................... 87
Chapter 4 Laplace Transforms..............................................108
 Definition of a Laplace Transform.....................................108
 Laplace Transforms of Some Elementary Functions.......................108
 Sufficient Conditions for Existence of Laplace Transforms.............109
 Inverse Laplace Transforms............................................109
 Laplace Transforms of Derivatives.....................................110
 The Unit Step Function................................................110
 Some Special Theorems on Laplace Transforms...........................111
 Partial Fractions.....................................................112
 Solutions of Differential Equations by Laplace Transforms.............112
 Applications to Physical Problems.....................................112
 Laplace Inversion Formulas............................................112
Chapter 5 Vector Analysis.................................................131
 Vectors and Scalars...................................................131
 Vector Algebra........................................................131
 Laws of Vector Algebra................................................132
 Unit Vectors..........................................................132
 Rectangular Unit Vectors..............................................132
 Components of a Vector................................................133
 Dot or Scalar Product.................................................133
 Cross or Vector Product...............................................134
 Triple Products.......................................................134
 Vector Functions......................................................135
 Limits, Continuity and Derivatives of Vector Functions................135
 Geometric Interpretation of a Vector Derivative.......................136
 Gradient, Divergence and Curl.........................................136
 Formulas Involving V..................................................137
 Orthogonal Curvilinear Coordinates. Jacobians.........................137
 Gradient, Divergence, Curl and Laplacian in Orthogonal Curvilinear....138
 Special Curvilinear Coordinates.......................................139
Chapter 6 Multiple, Line and Surface Integrals and Integral Theorems......157
 Double Integrals......................................................157
 Iterated Integrals....................................................157
 Triple Integrals......................................................158
 Transformations of Multiple Integrals.................................158
 Line Integrals........................................................159
 Vector Notation for Line Integrals....................................160
 Evaluation of Line Integrals..........................................160
 Properties of Line Integrals..........................................161
 Simple Closed Curves. Simply and Multiply-Connected Regions...........161
 Green\'s Theorem in the Plane..........................................161
 Conditions for a Line Integral to be Independent of the Path..........162
 Surface Integrals.....................................................163
 The Divergence Theorem................................................164
 Stokes\' Theorem.......................................................164
Chapter 7 Fourier Series..................................................192
 Periodic Functions....................................................192
 Fourier Series........................................................192
 Dirichlet Conditions..................................................193
 Odd and Even Functions................................................193
 Half Range Fourier Sine or Cosine Series..............................193
 Parseval\'s Identity...................................................194
 Differentiation and Integration of Fourier Series.....................194
 Complex Notation for Fourier Series...................................194
 Orthogonal Functions..................................................194
Chapter 8 Fourier Integrals...............................................211
 The Fourier Integral..................................................211
 Equivalent forms of Fourier\'s Integral Theorem........................211
 Fourier Transforms....................................................212
 Parseval\'s Identities for Fourier Integrals...........................212
 The Convolution Theorem...............................................213
Chapter 9 Gamma, Beta and Other Special Functions.........................220
 The Gamma Function....................................................220
 Table of Values and Graph of the Gamma Function.......................220
 Asymptotic Formula for T(n)...........................................221
 Miscellaneous Results Involving the Gamma Function....................221
 The Beta Function.....................................................221
 Dirichlet Integrals...................................................222
 Other Special Functions...............................................222
  Error Function....................................................222
  Exponential Integral..............................................222
  Sine Integral.....................................................222
  Cosine Integral...................................................222
  Fresnel Sine Integral.............................................222
  Fresnel Cosine Integral...........................................222
 Asymptotic Series or Expansions.......................................222
Chapter 10 Bessel Functions...............................................234
 Bessel\'s Differential Equation........................................234
 Bessel Functions of the First Kind....................................234
 Bessel Functions of the Second Kind...................................235
 Generating Function for J[sub(n)](x)..................................235
 Recurrence Formulas...................................................235
 Functions Related to Bessel Functions.................................236
  Hankel Functions of First and Second Kinds........................236
  Modified Bessel Functions.........................................236
  Ber, Bei, Ker, Kei Functions......................................236
 Equations Transformed into Bessel\'s Equation..........................236
 Asymptotic Formulas for Bessel Functions..............................237
 Zeros of Bessel Functions.............................................237
 Orthogonality of Bessel Functions.....................................237
 Series of Bessel Functions............................................237
Chapter 11 Legendre Functions and Other Orthogonal Functions..............252
 Legendre\'s Differential Equation......................................252
 Legendre Polynomials..................................................252
 Generating Function for Legendre Polynomials..........................252
 Recurrence Formulas...................................................252
 Legendre Functions of the Second Kind.................................253
 Orthogonality of Legendre Polynomials.................................253
 Series of Legendre Polynomials........................................253
 Associated Legendre Functions.........................................253
 Other Special Functions...............................................254
  Hermite Polynomials...............................................254
  Laguerre Polynomials..............................................254
 Sturm-Liouville Systems...............................................255
Chapter 12 Partial Differential Equations.................................268
 Some Definitions Involving Partial Differential Equations.............268
 Linear Partial Differential Equations.................................268
 Some Important Partial Differential Equations.........................269
  Heat Conduction Equation..........................................269
  Vibrating String Equation.........................................269
  Laplace\'s Equation................................................269
  Longitudinal Vibrations of a Beam.................................269
  Transverse Vibrations of a Beam...................................270
 Methods of Solving Boundary-Value Problems............................270
  General Solutions.................................................270
  Separation of Variables...........................................270
  Laplace Transform Methods.........................................271
Chapter 13 Complex Variables and Conformal Mapping........................296
 Functions.............................................................296
 Limits and Continuity.................................................296
 Derivatives...........................................................296
 Cauchy-Riemann Equations..............................................297
 Integrals.............................................................297
 Cauchy\'s Theorem......................................................297
 Cauchy\'s Integral Formulas............................................298
 Taylor\'s Series.......................................................298
 Singular Points.......................................................298
 Poles.................................................................298
 Laurent\'s Series......................................................299
 Residues..............................................................299
 Residue Theorem.......................................................299
 Evaluation of Definite Integrals......................................300
 Conformai Mapping.....................................................301
 Riemann\'s Mapping Theorem.............................................301
 Some General Transformations..........................................302
 Mapping of a Half Plane on to a Circle................................302
 The Schwarz-Christoffel Transformation................................303
 Solutions of Laplace\'s Equation by Conformal Mapping..................303
Chapter 14 Complex Inversion Formula for Laplace Transforms...............334
 The Complex Inversion Formula.........................................334
 The Bromwich Contour..................................................334
 Use of Residue Theorem in Finding Inverse Laplace Transforms..........334
 A Sufficient Condition for the Integral Around T to Approach Zero.....335
 Modification of Bromwich Contour in Case of Branch Points.............335
 Case of Infinitely Many Singularities.................................335
 Applications to Boundary-Value Problems...............................335
Chapter 15 Matrices.......................................................352
 Definition of a Matrix................................................352
 Some Special Definitions and Operations Involving Matrices............352
 Determinants..........................................................354
 Theorems on Determinants..............................................355
 Inverse of a Matrix...................................................356
 Orthogonal and Unitary Matrices.......................................356
 Orthogonal Vectors....................................................356
 Systems of linear Equations...........................................357
 Systems of n Equations in n Unknowns. Cramer\'s Rule...................357
 Eigenvalues and Eigenvectors..........................................358
 Theorems on Eigenvalues and Eigenvectors..............................359
Chapter 16 Calculus of Variations.........................................385
 Maximum or Minimum of an Integral.....................................385
 Euler\'s Equation......................................................385
 Constraints...........................................................386
 The Variational Notation..............................................386
 Generalizations.......................................................387
 Hamilton\'s Principle..................................................387
 Lagrange\'s Equations..................................................388
 Sturm-Liouville Systems and Rayleigh-Ritz Methods.....................388
Index.....................................................................409
 A.....................................................................409
 B.....................................................................409
 C.....................................................................409
 D.....................................................................410
 E.....................................................................411
 F.....................................................................411
 G.....................................................................412
 H.....................................................................412
 I.....................................................................412
 J.....................................................................413
 K.....................................................................413
 L.....................................................................413
 M.....................................................................413
 N.....................................................................414
 O.....................................................................414
 P.....................................................................414
 Q.....................................................................415
 R.....................................................................415
 S.....................................................................415
 T.....................................................................416
 U.....................................................................417
 V.....................................................................417
 W.....................................................................417
 X.....................................................................417
 Y.....................................................................417
 Z.....................................................................417




نظرات کاربران