دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jindong Li
سری: Space Science and Technologies Ser
ISBN (شابک) : 9789811548710, 9811548714
ناشر: Springer Singapore Pte. Limited
سال نشر: 2020
تعداد صفحات: 441
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Satellite Remote Sensing Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری های سنجش از راه دور ماهواره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Series Editor’s Preface Preface Contents About the Author 1 Fundamentals of Satellite Remote Sensing Technology 1.1 Introduction 1.2 Physical Basis of Satellite Remote Sensing 1.2.1 Electromagnetic Wave and Electromagnetic Spectrum 1.2.2 Solar Radiation Characteristics 1.2.3 Interaction Between Solar Radiation and Atmosphere 1.2.4 Interaction Between Electromagnetic Radiation and Target 1.3 Terrestrial Environment 1.3.1 Analysis of Satellite On-Orbit Environment and Effect 1.3.2 Charged Particle Radiation Environment 1.3.3 Vacuum 1.3.4 Neutral Atmosphere 1.3.5 Solar Electromagnetic Radiation 1.3.6 Solar Disturbance 1.3.7 Total Dose Effect of Space Radiation 1.3.8 Spatial Displacement Effect 1.3.9 Spatial Single Event Effect 1.4 Introduction to Satellite Remote Sensing Engineering System Reference 2 Space Orbit Design of Remote Sensing Satellite 2.1 Overview 2.1.1 Classification by Orbit Altitude 2.1.2 Classification by Orbital Characteristics 2.2 Design Requirements and Characteristics of Remote Sensing Satellite Orbits 2.2.1 Orbit Design Analysis of Optical Remote Sensing Satellite 2.2.2 Orbit Design Analysis of Microwave Remote Sensing Satellite 2.3 Analysis and Design of Multi-mission Orbits for Optical Remote Sensing Satellite 2.3.1 Orbit Selection Principle 2.3.2 Satellite Multi-mission Orbit Design 2.3.3 Design of Satellite Multi-mission Orbit Parameters 2.3.4 Orbit Control 2.3.5 Orbit Control Fuel Consumption 2.3.6 Mission Application Strategy 2.3.7 Design of Initial Orbit Offset 2.3.8 Drift Characteristics of LTDN 2.3.9 Design of Resolution and Revisit Ability 2.4 Orbital Analysis and Design of Microwave Imaging Remote Sensing Satellite 2.4.1 Orbit Selection Principle 2.4.2 Orbital Parameter Determination 2.4.3 Mission Orbit Parameter 2.4.4 Initial Orbit Offset Design 2.4.5 Orbit Control 2.4.6 Observational Capability Analysis 2.4.7 LTDN Drift 3 Analysis and Design of High-Resolution Visible Spectral Remote Sensing Satellite System 3.1 Overview 3.1.1 Development Overview 3.1.2 Trend of Development 3.2 Demand Analysis and Technical Characteristics 3.2.1 Demand Analysis 3.2.2 Technical Characteristics of Visible Spectral Remote Sensing Satellite 3.3 Key Performance Indicators of Imaging Quality of Visible Spectral Remote Sensing System 3.3.1 Radiation Imaging Quality 3.3.2 Geometric Imaging Quality 3.4 Analysis and Design of Imaging Quality of High-Resolution Visible Spectral Camera 3.4.1 Overview of the Development of High-Resolution Visible Spectral Cameras 3.4.2 Key Design Elements of Visible Spectral Camera 3.4.3 Design of GSD and Camera Focal Length 3.4.4 Image Width and Camera FOV Design 3.4.5 Spectral Band Configuration 3.4.6 Selection of Detector 3.4.7 Selection of Relative Aperture of Lens and Determination of Camera Aperture 3.4.8 Design of Camera Optical System 3.4.9 Design for Stray Radiation Suppression 3.4.10 Optical System Distortion Control and Analysis 3.4.11 Determination of the Number of Valid Pixels 3.4.12 Focal Plane Detector Stitching and Stitching Accuracy 3.4.13 Analysis and Design of Focal Plane and Imaging Circuit of Camera 3.4.14 Design of Focusing System 3.4.15 Thermal Optical Stability Design 3.4.16 Mechanical Stability Design 3.5 High-Resolution Visible Spectral Camera Solution Description 3.5.1 Definition of the Main Functions of the Camera 3.5.2 Design Constraints 3.5.3 System Configuration and Topology 3.5.4 Operating Mode Design 3.5.5 Camera Optical System Design 3.5.6 Design of Camera Electronic System 3.5.7 Description of Camera High-Precision Thermal Control Design 3.6 Design of Satellite On-Orbit Imaging Mode 3.6.1 Along-Track Directional Push-Broom Imaging Mode 3.6.2 One-Orbit Multitarget Imaging Mode 3.6.3 One-Orbit Stitched Imaging Mode 3.6.4 One-Orbit Multi-Angle Imaging Mode 3.6.5 Non-Along-Track Active Push-Broom Imaging Mode 3.7 Analysis and Design of Satellite’s On-Orbit Dynamic Imaging Quality 3.7.1 Design Measures for Quality Assurance of Satellite On-Orbit Dynamic Imaging 3.7.2 High-Precision Image Shift Matching Design 3.7.3 Image-Aided Data Design 3.7.4 High-Precision Time Synchronization Design for Whole Satellite 3.7.5 On-Orbit Dynamic MTF Analysis 3.7.6 On-Orbit Dynamic Range Analysis 3.7.7 On-Orbit SNR Analysis 3.8 Geometric Positioning Accuracy Analysis 3.8.1 Error Source Analysis 3.8.2 Design Measures for Improving Positioning Accuracy 3.8.3 Joint Attitude Determination Method and Accuracy Analysis 3.9 Spectral Registration Analysis 3.9.1 Optical System Distortion Stability 3.9.2 Influence of Satellite Attitude Control Accuracy 3.9.3 Registration Error Induced by Ground Elevation 3.10 Laboratory Calibration Technology 3.10.1 Ground Laboratory Calibration 3.10.2 Laboratory High-precision Geometric Internal Calibration 3.11 Application of Visible Spectral Remote Sensing Satellite 3.11.1 Application of Urban Planning Monitoring 3.11.2 Disaster Prevention and Mitigation Application 3.11.3 Road Network Extraction and Monitoring Application 3.12 Conclusion References 4 Design and Analysis of Infrared Remote Sensing Satellite System 4.1 Overview 4.1.1 Development Trend 4.2 Demand Analysis and Mission Technical Characteristics 4.2.1 Demand Analysis 4.2.2 Mission Characteristics 4.2.3 Technical Characteristics 4.3 Key Performance Index and Connotation of Infrared Remote Sensing System Imaging Quality 4.3.1 Radiation Imaging Quality of Infrared Remote Sensing System 4.3.2 Geometric Imaging Quality of Infrared Remote Sensing System 4.4 Design and Analysis of Imaging Quality of High-Resolution Infrared Camera 4.4.1 Analysis of Key Design Elements for Imaging Quality of High-Resolution Infrared Camera 4.4.2 Selection of Imaging System 4.4.3 Spectral Band Configuration and Spectral Band Range Determination 4.4.4 Ground Pixel Resolution 4.4.5 Imaging Swath Design 4.4.6 Selection of Detector and Its Refrigeration Module for Focal Plane 4.4.7 Scanning Characteristic Analysis Based on Whisk Broom Type Imaging System 4.4.8 Design of Camera Optical System 4.4.9 Stray Light Suppression 4.4.10 Noise Equivalent Temperature Difference 4.4.11 Dynamic Range 4.4.12 Design of On-Satellite Calibration Accuracy 4.5 Program Description of Whisk Broom Infrared Camera System 4.5.1 Definition of Main Functions of Infrared Camera 4.5.2 Analysis on System Design Constraints 4.5.3 Configuration and Topology of Infrared Camera System 4.5.4 Operating Mode Design 4.5.5 Optical System Scheme 4.5.6 Scanning System Concept 4.5.7 Infrared Detector and Its Refrigerator Component Scheme 4.5.8 Electronic System 4.5.9 Camera Thermal Control Scheme 4.6 Design and Analysis of On-Orbit Dynamic Imaging Quality of Infrared Remote Sensing Satellite 4.6.1 Analysis of On-Orbit Dynamic Imaging MTF 4.6.2 Analysis of On-Orbit Dynamic Range 4.6.3 Analysis of On-Orbit Temperature Resolution 4.6.4 Analysis of Strip Stitching Characteristics 4.6.5 Image Distortion Analysis 4.7 Infrared Remote Sensing System Calibration Technology 4.7.1 Ground Vacuum Radiometric Calibration 4.7.2 On-Orbit Calibration 4.8 Application of Infrared Remote Sensing Satellite 4.8.1 Application of Water Pollution Monitoring 4.8.2 Urban Infrared Remote Sensing Application 4.8.3 Marine Rights Protection and Regulation Application 4.8.4 National Security and National Defense Application 4.8.5 Application of Visible—Infrared Remote Sensing Fusion 4.9 Summary 5 Design and Analysis of Hyperspectral Remote Sensing Satellite System 5.1 Overview 5.1.1 Development Review 5.1.2 Development Trend 5.2 Requirement Analysis and Technical Characteristics 5.2.1 Mission Requirement Analysis 5.2.2 Target Characteristic Analysis 5.2.3 Technical Characteristics of Hyperspectral Remote Sensing Satellite 5.3 Key Performance Indices and Implications of Imaging Quality for Hyperspectral Remote Sensing System 5.3.1 Radiation Imaging Quality 5.3.2 Spectral Quality 5.3.3 Geometric Imaging Quality 5.4 Design and Analysis of Imaging Quality of Hyperspectral Imager 5.4.1 Analysis of Key Design Elements of Hyperspectral Imaging Quality 5.4.2 Selection of Imaging System 5.4.3 Design of Spectrometer Optical System 5.4.4 Band Selection and Configuration 5.4.5 Detector Selection 5.4.6 Design of Ground Pixel Resolution 5.4.7 Frame Rate Analysis 5.4.8 Evaluation of On-Orbit Dynamic Modulation Transfer Function 5.4.9 Dynamic Range and SNR Evaluation 5.4.10 Compression Algorithms and Compression Ratio Configuration 5.4.11 Accuracy of Spectral Registration 5.4.12 Effect of Attitude Stability and Drift Angle Control Accuracy on Recovery Accuracy 5.4.13 Design of Large Angular Motion Compensation 5.4.14 High-Precision Mechanical/Thermal Stability Design 5.5 Scheme Description of High-Resolution Interferometric Hyperspectral Imager 5.5.1 Analysis of System Design Constraints 5.5.2 System Configuration and Topology 5.5.3 Design of Working Mode 5.5.4 Opto-mechanical System Design 5.5.5 Design of Electronic System 5.5.6 On-Board Calibration Design 5.6 Satellite On-Orbit Imaging Mode Design 5.6.1 Energy Analysis 5.6.2 Observation Efficiency Analysis 5.6.3 Application Mode Analysis 5.6.4 On-Orbit Imaging Mode Design 5.7 Design and Analysis of Satellite On-Orbit Dynamic Imaging Quality 5.7.1 On-Orbit Dynamic MTF Analysis 5.7.2 On-Orbit SNR Analysis 5.7.3 On-Orbit Dynamic Range Analysis 5.7.4 Analysis of Geometric Positioning Accuracy 5.8 Calibration Technology of Hyperspectral Imaging System 5.8.1 Spectral Calibration 5.8.2 Radiometric Calibration 5.9 Application of Hyperspectral Remote Sensing Satellite 5.9.1 Geological Mineral Survey 5.9.2 Observation of Oil and Gas Fields 5.9.3 Marine Application 5.9.4 Forestry Application 5.9.5 Agricultural Application 5.9.6 Monitoring of Water Pollutants 5.10 Summary References 6 Design and Analysis of High-Precision Stereo Surveying and Mapping Satellite System 6.1 Overview 6.1.1 Development Overview 6.1.2 Trend of Development 6.2 Requirement Analysis 6.3 Key Performance Index and Connotation of Optical Surveying and Mapping System 6.3.1 H/B 6.3.2 Ground Geometric Positioning Accuracy 6.4 Analysis of Satellite Surveying and Mapping System 6.5 Inner Orientation Element Requirements and Stability 6.5.1 Requirements on Inner Orientation Element 6.5.2 Inner Orientation Element Stability 6.6 Measurement and Stability of External Orientation Elements 6.6.1 High-Precision Positioning Measurement 6.6.2 High-Precision Optical Axis Pointing Measurement 6.7 High-Precision Time Synchronization Technology 6.7.1 Composition of Time System 6.7.2 Time System Service Mode 6.7.3 Accuracy Analysis of Time System 6.8 Tie-Points Matching Technology 6.8.1 Rough Matching Technology Based on Imaging Geometry Relation 6.8.2 High-Precision Matching Technology Based on Image Texture 6.9 Scheme Design of Three-Line Array Stereo Camera 6.9.1 System Composition and Topology 6.9.2 Design of Optical-Mechanical System for High-Precision Three-Line Array Camera 6.9.3 Design of Camera Electronic System 6.10 Geometric Calibration Technology 6.10.1 High-Precision Calibration of Interior Orientation Elements in Laboratory 6.10.2 On-Orbit High-Precision Geometric Calibration 6.11 High-Precision Surveying and Mapping Processing Technology and Flight Test Results 6.12 Application of Stereo Surveying and Mapping Satellite 6.12.1 Basic Geographic Surveying and Mapping 6.12.2 Surveying and Mapping of Islands and Reefs 6.12.3 National Geographical Situation Monitoring 6.13 Conclusion Reference 7 Design and Analysis of High-Resolution SAR Remote Sensing Satellite System 7.1 Overview 7.1.1 Overview of Development 7.1.2 Development Trend 7.2 Demand Analysis and Technical Characteristics 7.2.1 Task Requirement Analysis 7.2.2 Technical Characteristics of Microwave Imaging Satellite 7.3 Key Design Elements of Space-Borne SAR Imaging Quality 7.3.1 Radiation Imaging Quality 7.3.2 Geometric Imaging Quality 7.4 Design and Analysis of Space-Borne SAR Payload 7.4.1 Principle of SAR Imaging 7.4.2 SAR Antenna Design 7.4.3 Design of Incident Angle 7.4.4 Spatial Resolution Design 7.4.5 Imaging Swath Design 7.4.6 Determination of Radiation Resolution 7.4.7 Radiation Error Source Analysis and Accuracy Determination 7.4.8 SAR Calibration Technology 7.4.9 Analysis of Impulse Response Characteristics 7.4.10 System Sensitivity Analysis 7.4.11 Ambiguity Analysis 7.4.12 Selection of Payload High-Speed Real-Time Compression Method and Compression Strategy 7.4.13 Beam Pointing Accuracy Control 7.4.14 High-Precision Yaw Guidance Control of Satellite Attitude 7.5 Design of Space-Borne SAR Imaging Mode 7.5.1 Strip Mode 7.5.2 Scan Mode 7.5.3 Spotlight Mode 7.6 Scheme Description of Space-Borne SAR Payload System 7.6.1 System Configuration and Its Topology 7.6.2 System Function Design 7.6.3 System Design Constraints 7.6.4 Scheme Description of SAR Payload Electronic System 7.6.5 Description of SAR Antenna System Design 7.7 Analysis and Design of Space-Borne SAR Imaging Quality 7.7.1 Satellite Position Measurement Error 7.7.2 Satellite Orbit Perturbation 7.7.3 Satellite Attitude Error 7.7.4 Satellite Attitude Stability 7.7.5 Ground Resolution 7.7.6 Peak Sidelobe Ratio and Integral Sidelobe Ratio 7.7.7 Imaging Width 7.7.8 Noise Equivalent Backscattering Coefficient NEσ0 7.7.9 Azimuth Ambiguity 7.7.10 Range Ambiguity 7.7.11 Radiation Error Source Analysis and Its Precision Control 7.7.12 Radiation Resolution 7.7.13 Verification of SAR Imaging Quality 7.8 Accuracy Analysis of Space-Borne SAR Imaging Positioning 7.8.1 Basic Principle of Space-Borne SAR Image Positioning 7.8.2 Positioning Accuracy Error Source Analysis 7.9 Space-Borne SAR Data Processing and Inversion Technology 7.9.1 Echo Signal Modeling Technology 7.9.2 Data Processing Method 7.9.3 Speckle Noise Suppression Technology 7.10 Application of SAR Remote Sensing Satellite 7.10.1 Application of Space-Borne SAR in Disaster Reduction 7.10.2 Application of Space-Borne SAR in Marine 7.10.3 Detection and Recognition of Space-Borne SAR Ship 7.10.4 Detection on Ground Moving Target by Space-Borne SAR 7.10.5 Application of Space-Borne SAR Interferometric Mapping 7.10.6 Differential Interference Application of Space-Borne SAR 7.11 Conclusion References 8 Design and Analysis of High-Precision Microwave Remote Sensing Satellite System 8.1 Overview 8.2 Task Requirements and Payload Configuration Analysis 8.2.1 Ocean Dynamic Environment Observation Requirements 8.2.2 Analysis of Remote Sensor Configuration Scheme 8.2.3 Constraints on Orbit Design 8.3 Design and Analysis of Radar Altimeter 8.3.1 Principle of Radar Altimeter 8.3.2 Design and Analysis of Radar Altimeter 8.3.3 Configuration of Radar Altimeter and Topology 8.3.4 Design of Working Mode 8.3.5 Height Measurement Precision Analysis and Control of Radar Altimeter 8.4 Design and Analysis of Microwave Scatterometer 8.4.1 Principle of Scatterometer 8.4.2 Scatterometer Design Analysis 8.4.3 Configuration and Topology of Microwave Scatterometer 8.4.4 Design of Operating Mode 8.4.5 Accuracy Analysis and Precision Control of Microwave Scatterometer 8.5 Design and Analysis of Microwave Radiometer 8.5.1 Principle of Microwave Radiometer 8.5.2 Calculations of Microwave Radiometer Temperature Measurement 8.5.3 Design and Analysis of Microwave Radiometer 8.5.4 Configuration and Topology of Microwave Radiometer 8.5.5 Design of Working Mode 8.5.6 Error Source Analysis and Accuracy Control of Microwave Radiometer Temperature Measurement 8.6 Design and Analysis of Calibration Radiometer 8.6.1 Principle of Calibration Radiometer 8.6.2 Design and Analysis of Calibration Radiometer 8.6.3 Calibration Radiometer Configuration and Topological Structure 8.6.4 Design of Operating Mode 8.6.5 Error Source and Accuracy Control of Calibration Radiometer Measurement 8.7 Data Processing and Application of Microwave Remote Sensing Satellite 8.7.1 Data Processing 8.7.2 Tsunami Early Warning 8.7.3 Application of Typhoon Monitoring 8.7.4 Application in Fishery Environment and Fishery Information Service 8.7.5 Sea-Level Change Monitoring 8.8 Conclusion Reference 9 Design and Analysis of Optical Remote Sensing Satellite System on Geostationary Orbit 9.1 Overview 9.1.1 Development Overview 9.1.2 Development Trend 9.2 Demand Analysis and Technical Characteristics 9.2.1 Demand Analysis 9.2.2 Technical Characteristics of GEO Optical Remote Sensing Satellite 9.3 Analysis of Coverage Characteristics and Time Resolution of GEO Optical Remote Sensing System 9.3.1 Orbit Selection Analysis 9.3.2 Geometric Analysis of Earth Observation 9.3.3 Time Resolution Analysis 9.4 Key Performance Indicators for Imaging Quality of GEO Optical Emote Sensing Satellite 9.5 Design and Analysis of Imaging Quality of GEO Optical Remote Sensing Satellite System 9.5.1 Selection of Imaging System 9.5.2 Selection of Optical System Forms 9.5.3 Band Selection and Configuration 9.5.4 Selection of Detectors 9.5.5 Design of Single-Scene Imaging Swath 9.5.6 Design of Ground Pixel Resolution 9.5.7 Exposure Time Planning 9.6 On-Orbit Imaging Mode Design 9.6.1 Real-Time Video Gaze Mode 9.6.2 Regional Observation Model 9.6.3 Maneuver Inspection Mode 9.7 Scheme Description of High-Resolution GEO Imager 9.7.1 Camera Function Definition 9.7.2 System Task Constraints 9.7.3 System Configuration and Topology 9.7.4 Design of Camera Working Mode 9.7.5 Design of Camera Optical Machine System 9.7.6 Design of Camera Electronic System 9.7.7 Design of Onboard Calibration System 9.8 Design and Analysis of Dynamic Satellite Imaging Quality On-Orbit 9.8.1 Analysis of the Influence of Satellite Body Flutter on Imaging Quality 9.8.2 Analysis of On-Orbit MTF of Satellite 9.8.3 Dynamic Range Analysis of On-Orbit Satellite Imaging 9.8.4 SNR Analysis of On-Orbit Satellite Imaging 9.8.5 Laboratory Calibration Accuracy Analysis 9.8.6 Geometric Positioning Accuracy Analysis 9.9 On-Orbit Calibration Analysis of High-Orbit Optical Remote Sensing System 9.9.1 On-Orbit Relative Radiation Calibration 9.9.2 On-Orbit Absolute Radiation Calibration 9.9.3 On-Orbit Geometric Calibration of Two-Dimensional Array Payloads 9.10 Application of High-Orbit Optical Remote Sensing Satellite 9.10.1 Fast Mission Response Application 9.10.2 Application of Continuous Target Observation 9.10.3 Application of Large-Scale Situation Awareness 9.11 Summary References 10 Development Prospect 10.1 Future New “Internet + Satellite Remote Sensing + Big Data + Digital Earth” System 10.2 High-Resolution Earth Observation Satellite System Combining LEO, MEO, and HEO 10.3 New Remote Sensing Technology in the Future 10.3.1 High-Resolution Satellite Remote Sensing Technology in Visible, Infrared, and Microwave Bands 10.3.2 High-Resolution SAR with Multi-Azimuth and -Temporal Information Acquisition Technology 10.3.3 High-Sensitivity Infrared Remote Sensing Technology 10.3.4 Visible Light-Longwave Infrared Hyperspectral Imaging Technology 10.3.5 Commercial Small Satellite Constellation System Promotes the Development of New Application Industry Reference