ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Satellite Precipitation Measurement: Volume 2 (Advances in Global Change Research, 69)

دانلود کتاب اندازه‌گیری بارش ماهواره‌ای: جلد 2 (پیشرفت‌ها در تحقیقات تغییر جهانی، 69)

Satellite Precipitation Measurement: Volume 2 (Advances in Global Change Research, 69)

مشخصات کتاب

Satellite Precipitation Measurement: Volume 2 (Advances in Global Change Research, 69)

ویرایش:  
نویسندگان: , , , , ,   
سری:  
ISBN (شابک) : 303035797X, 9783030357979 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 797 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 41 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Satellite Precipitation Measurement: Volume 2 (Advances in Global Change Research, 69) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اندازه‌گیری بارش ماهواره‌ای: جلد 2 (پیشرفت‌ها در تحقیقات تغییر جهانی، 69) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اندازه‌گیری بارش ماهواره‌ای: جلد 2 (پیشرفت‌ها در تحقیقات تغییر جهانی، 69)



این کتاب یک نمای کلی از اندازه گیری بارش از فضا ارائه می دهد، که در طول دو دهه گذشته پیشرفت های قابل توجهی داشته است. این عمدتاً به دلیل مأموریت اندازه‌گیری بارندگی استوایی (TRMM)، مأموریت اندازه‌گیری بارش جهانی (GPM)، CloudSat و مجموعه‌ای از ماهواره‌هایی است که به دقت نگهداری می‌شوند که میزبان حسگرهای مایکروویو غیرفعال هستند. این کتاب مجدداً به کتاب قبلی، اندازه‌گیری بارش از فضا، ویرایش شده توسط V. Levizzani، P. Bauer و F. J. Turk، که با Springer در سال 2007 منتشر شده بود، بازبینی می‌کند. سپس. این کتاب کمک‌های بی‌نظیری از کارشناسان میدانی و گروه کاری بین‌المللی بارش (IPWG) ارائه می‌کند.

این کتاب مورد توجه هواشناسان، آب‌شناسان، اقلیم شناسان، مقامات مدیریت آب، دانش آموزان در سطوح مختلف و بسیاری از طرف های دیگر علاقه مند به استفاده از مجموعه داده های بارش ماهواره ای هستند.


توضیحاتی درمورد کتاب به خارجی

This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG).

The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.



فهرست مطالب

Preface
Acknowledgments
Contents of Volume 2
Contents of Volume 1
List of Figures
List of Tables
Contributors
Acronyms
Part IV: Validation
	Chapter 25: The IPWG Satellite Precipitation Validation Effort
		25.1 Introduction
		25.2 Current Validation Work: Data and Methodological Approach
		25.3 Examples of IPWG Validation
			25.3.1 Regional Analysis Over Japan Region
			25.3.2 Seasonal Studies Over South America
			25.3.3 Examples of IPWG-Related Studies
		25.4 Future Validation Efforts
		25.5 Conclusions
		References
	Chapter 26: The GPM Ground Validation Program
		26.1 Overview
			26.1.1 GV Measurement Synergy
		26.2 Validation Instruments, Data, and Examples
			26.2.1 Primary Datasets
			26.2.2 Example Applications of VN Datasets
			26.2.3 Validation Using GV-MRMS
			26.2.4 Application to Verification of GPM L1SRs
		26.3 Physical Validation Activities
		26.4 Validation of the GPM IMERG Product
			26.4.1 Examples of IMERG Validation Over South Korea
			26.4.2 Selected Examples of IMERG Validation Over CONUS
		26.5 Summary and Moving Forward
		References
	Chapter 27: The GPM DPR Validation Program
		27.1 Introduction
		27.2 Calibration
		27.3 Ground Ka-Radar Experiment
			27.3.1 Measurements
			27.3.2 Results
		27.4 Comparisons of DPR Products with Ground Observations
			27.4.1 GPM/DPR Ground Validation Comparing with Rain Gauge Data Over Japan
			27.4.2 GPM/DPR Ground Validation with MRMS/NMQ Data Over the US
			27.4.3 Surface Snow Flag in the Latest DPR Product
		27.5 Summary
		References
	Chapter 28: Error and Uncertainty Characterization
		28.1 Uncertainty Sources of Satellite Precipitation Products
		28.2 Methods for Assessing Satellite Precipitation Products
			28.2.1 The Benchmark
			28.2.2 Verification Metrics
			28.2.3 Triple Collocation Analysis
		28.3 Error and Uncertainty Models
		28.4 Summary of the Performance of the Main Satellite Precipitation Products
		References
	Chapter 29: Multiscale Evaluation of Satellite Precipitation Products: Effective Resolution of IMERG
		29.1 Introduction
		29.2 Data
			29.2.1 IMERG
			29.2.2 MRMS Gauge-Adjusted Radar QPE
		29.3 Method: Spectral Analysis in the Wavelet Domain
			29.3.1 Rationale
			29.3.2 Implementation
			29.3.3 Illustrative Case Study
		29.4 Results
		29.5 Conclusions
		Appendix: Two-Dimensional Discrete Orthogonal Decomposition with the Haar Wavelet
			Wavelets Functions in One Dimension and N Dimensions
			The Haar Discrete Orthogonal Wavelets in One and Two Dimensions
		References
	Chapter 30: Remote Sensing of Orographic Precipitation
		30.1 Introduction
		30.2 Orographic Precipitation Measurement
		30.3 Ground-Validation
		30.4 Physical-Basis of Retrieval Errors
		30.5 Summary
		References
	Chapter 31: Integrated Multi-satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on S...
		31.1 Introduction
		31.2 Spaceborne and Ground-Based Precipitation Datasets
			31.2.1 Dual-Frequency Phased Array Radar
			31.2.2 GPM Microwave Imager
			31.2.3 Integrated Multi-satellitE Retrievals for GPM
			31.2.4 Ground-Based Reference Precipitation
		31.3 Impact of Precipitation Typology on Satellite-Based Active, Passive and Merged Precipitation Estimation
			31.3.1 DPR QPE and Precipitation Typology
			31.3.2 GMI QPE and Precipitation Typology
			31.3.3 IMERG and Precipitation Typology
		31.4 Conclusion
		References
	Chapter 32: Hydrologic Validation and Flood Analysis
		32.1 Introduction
		32.2 Space-Time Validation Framework
			32.2.1 Point Based Evaluation
			32.2.2 River Network Based Multiscale Valuation
			32.2.3 River Network Based Error Dependence
		32.3 Conclusions
		References
	Chapter 33: Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling
		33.1 Introduction
		33.2 Data and Methods
			33.2.1 P Datasets
			33.2.2 Performance Evaluation Using Gauge Observations
			33.2.3 Performance Evaluation Using Hydrological Modeling
		33.3 Results and Discussion
			33.3.1 Performance in Terms of Temporal Dynamics
			33.3.2 Performance in Terms of Climate Indices
			33.3.3 Performance Evaluation Using Hydrological Modeling
		33.4 Conclusions
		References
	Chapter 34: OceanRAIN - The Global Ocean Surface-Reference Dataset for Characterization, Validation and Evaluation of the Wate...
		34.1 Introduction
		34.2 The OceanRAIN Optical Disdrometer ODM470
		34.3 Data Ingest and Data Set Construction
		34.4 OceanRAIN Data Sets
		34.5 Applications and Validation
			34.5.1 Precipitation Characterization
			34.5.2 The Point-to-Area Representativeness
			34.5.3 IMERG Validation
		34.6 Conclusions and Future Outlook
		References
Part V: Observed Characteristics of Precipitation
	Chapter 35: GPCP and the Global Characteristics of Precipitation
		35.1 Introduction
		35.2 GPCP Monthly Analysis Technique
		35.3 Global Precipitation Climatology
		35.4 Variations in Global Mean Precipitation (1979-2017)
		35.5 Patterns of Precipitation Variation and Trends
		35.6 Trends in Precipitation Intensity at the Monthly Scale
		35.7 Summary
		References
	Chapter 36: Global Snowfall Detection and Measurement
		36.1 Introduction
		36.2 Global Snowfall: CloudSat´s Recent Contributions
		36.3 CloudSat Snowfall Detection and QPE Algorithm
		36.4 Global Snowfall Characteristics
			36.4.1 CloudSat Sampling
			36.4.2 Snowfall Occurrence Statistics
			36.4.3 CPR Reflectivity Variability: Snowfall Events
			36.4.4 Snowfall QPE
		36.5 Concluding Remarks
		References
	Chapter 37: Snowfall Detection by Spaceborne Radars
		37.1 Introduction
		37.2 Classical Methods to Determine Surface Precipitation Types
		37.3 Vertical Phase Distribution from Spaceborne Radars
		37.4 Use of Dual-Frequency Observations
		37.5 Future Directions
		References
	Chapter 38: On the Duration and Life Cycle of Precipitation Systems in the Tropics
		38.1 Introduction
		38.2 The Climatology and Morphology of the MCS
			38.2.1 Background and Robust Features
			38.2.2 TOOCAN Specific Features of Tropical MCS
		38.3 Precipitation and MCS Duration
			38.3.1 The Precipitation Totals and the Degree of Organization of Convection
			38.3.2 The Precipitation Totals and the System Duration
		38.4 Precipitation and the MCS Life Cycle
			38.4.1 The Linear Growth/Decay Model for the Cold Cloud Shield Life Cycle
			38.4.2 Compositing GEO and LEO Along the Life Cycle
		38.5 Conclusions
		References
	Chapter 39: Observational Characteristics of Warm-Type Heavy Rainfall
		39.1 Introduction
		39.2 Data and Analysis Method
		39.3 Comparison Between Korea and Oklahoma
		39.4 General Features Found Over the East Asian Monsoon Area
		39.5 Role of Collision and Coalescence Processes
		39.6 Conclusions
		References
	Chapter 40: Satellite Precipitation Measurement and Extreme Rainfall
		40.1 Introduction
			40.1.1 Physical Principles of Satellite Rainfall Measurements
			40.1.2 Selected Satellite QPE Products
		40.2 Statistical Distribution of Rainfall Extremes
			40.2.1 Average and Maximum Rainfall
			40.2.2 Thresholds, Percentiles and Spatial Distribution of Daily Extremes
		40.3 Application of Satellite QPE to Extreme Events
			40.3.1 Rainfall Extremes at the Daily Scale
			40.3.2 Daily Rainfall Extremes in Relation to Cyclonic Activity
			40.3.3 Other Applications of SPPs with Respect to Rainfall Extremes
		40.4 Verification of Satellite QPE Extremes with Respect to In-Situ Rain Gauge Observations
		40.5 Conclusions and Future Directions in Satellite QPEs for Extreme Events Measurements
		References
	Chapter 41: Rainfall Trends in East Africa from an Ensemble of IR-Based Satellite Products
		41.1 Introduction
		41.2 Data and Methods
			41.2.1 Satellite Products
			41.2.2 Rainfall Indices and Trend Analysis Methodology
		41.3 Rainfall Seasonality and Variability
		41.4 Trend Results
			41.4.1 Trend Analysis of Annual Rainfall Indices
			41.4.2 Trend Analysis of Seasonal Rainfall Indices
				41.4.2.1 January-February (JF) Season
				41.4.2.2 March-April-May (MAM) Season
				41.4.2.3 June-July-August-September (JJAS) Season
				41.4.2.4 October-November-December (OND) season
		41.5 Conclusions
		References
	Chapter 42: Heavy Precipitation Systems in the Mediterranean Area: The Role of GPM
		42.1 Introduction
		42.2 Satellite Precipitation Products
		42.3 Isolated Deep-Convective Systems
		42.4 Mesoscale Convective Systems
		42.5 Medicanes
		42.6 Final Remarks
		References
	Chapter 43: Dryland Precipitation Climatology from Satellite Observations
		43.1 Introduction
		43.2 Background on Dryland Climate
		43.3 Accuracy of Satellite Precipitation Estimates for Dryland Regions
		43.4 Satellite-Derived Climatological Properties of Dryland Precipitation
		43.5 Quasi-Global Dryland Precipitation Climatology from TRMM Observations
		43.6 Conclusions and Recommendations
		References
	Chapter 44: Hailfall Detection
		44.1 Physical Basis
		44.2 Microwave Imager and Active Radar Retrievals
		44.3 Microwave Sounder Retrievals
			44.3.1 MicroWave Cloud Classification (MWCC)
			44.3.2 Hail Detection with MWCC Method
			44.3.3 NOAA AMSU-b/MHS
		44.4 Summary
		References
	Chapter 45: Improving High-Latitude and Cold Region Precipitation Analysis
		45.1 Introduction
		45.2 Utilizing CloudSat to Assess High Latitude Precipitation
			45.2.1 Analysis of Zonal Precipitation Distribution Over Ocean
			45.2.2 Regional Analysis and Precipitation Pattern
		45.3 Utilizing GRACE to Assess Cold Region Precipitation
		45.4 Concluding Remarks
		References
	Chapter 46: Latent Heating Retrievals from Satellite Observations
		46.1 Introduction
		46.2 The Spectral Latent Heating (SLH) Algorithm
			46.2.1 Latent Heating Retrieval for the Tropical Region
			46.2.2 SLH Algorithm for Mid Latitudes
				46.2.2.1 Construction of LUTs
				46.2.2.2 SLH Retrieval from GPM KuPR: Consistency Check and Performance
		46.3 Convective and Stratiform Heating (CSH) Algorithm
			46.3.1 CSH Algorithm for Tropical Region
				46.3.1.1 Cases for CSH Look-Up Table
				46.3.1.2 Updated CSH
			46.3.2 CSH for High Latitudes
				46.3.2.1 NU-WRF and Cases
				46.3.2.2 NU-WRF and Look-Up Tables
				46.3.2.3 Consistency Check
		46.4 Summary and Future Issues
		References
Part VI: Applications
	Chapter 47: Operational Applications of Global Precipitation Measurement Observations
		47.1 Introduction
		47.2 Background and Methods
			47.2.1 GPM
			47.2.2 Data
			47.2.3 Motivation
			47.2.4 End User Interaction
		47.3 Applications
			47.3.1 Landslides/Mudslides
			47.3.2 Flooding
			47.3.3 Atmospheric Rivers
			47.3.4 Rain Gauge Verification
			47.3.5 Additional Applications
				47.3.5.1 Supporting High Impact Events
				47.3.5.2 Precipitation - Applications Related to Snowfall
				47.3.5.3 Hurricane Structure and Intensity
		47.4 Conclusions
		References
	Chapter 48: Assimilation of Precipitation Observations from Space into Numerical Weather Prediction (NWP)
		48.1 Introduction
			48.1.1 Understanding the Remote Sensing of Precipitation
			48.1.2 Applications of Space-Borne Precipitation Measurements
		48.2 Precipitation Measurement from Space: Sensitivity Assessment
			48.2.1 Sensitivity to Microphysical Properties
			48.2.2 Sensitivity to the Surrounding Environment
		48.3 Important Factors for the Physical Inversion and Data Assimilation of Precipitation Observations
			48.3.1 The Theoretical and Mathematical Basis for the Inversion of Satellite Radiances
			48.3.2 The Issue of Non-linearities When Assimilating Precipitation Measurements
			48.3.3 Uncertainties in Radiative Transfer and Jacobians
			48.3.4 Model-Related Limiting Factors in the Assimilation of Precipitation
		48.4 The Assimilation of Precipitating Data: Different Methods and Perspectives
			48.4.1 A Summary of Previous Efforts
			48.4.2 Global Assimilation of Precipitation Affected Radiances at ECMWF
			48.4.3 Global Assimilation of Precipitation Affected Radiances at JMA: Impacts on Tropical Cyclones
			48.4.4 Assimilation of Precipitation Affected Radiances Using a 1D-Var + 4D-EnVar
		48.5 Final Thoughts on Precipitation Data and Data Assimilation for Numerical Weather Prediction
		References
	Chapter 49: Precipitation Ensemble Data Assimilation in NWP Models
		References
	Chapter 50: PERSIANN-CDR for Hydrology and Hydro-climatic Applications
		50.1 Introduction
		50.2 Hydro-climatic Applications
			50.2.1 RainSphere for Global Precipitation Analysis and Visualization
			50.2.2 Evaluation of PERSIANN-CDR on Extreme Events
			50.2.3 Evaluation of CMIP5 Model Precipitation
		50.3 Hydrology Applications
			50.3.1 Hydrologic Modeling
			50.3.2 Rainfall Frequency Analysis Using Satellite-Retrieved Precipitation
		50.4 Conclusions
		References
	Chapter 51: Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture
		51.1 Introduction
		51.2 SM2RAIN Algorithm
		51.3 SM2RAIN-Derived Rainfall Products
			51.3.1 SM2RAIN-CCI
			51.3.2 SM2RAIN-ASCAT
		51.4 Flood Modelling in Europe Through SM2RAIN-Derived Rainfall Products
			51.4.1 In Situ and Satellite Datasets
			51.4.2 MISDc Rainfall-Runoff Modelling
			51.4.3 Results
		51.5 Limitations and Future Directions
		References
	Chapter 52: Drought Risk Management Using Satellite-Based Rainfall Estimates
		52.1 Introduction
		52.2 Rainfall Monitoring for Drought Assessment
			52.2.1 Evolution of Rainfall Observation Technology: From Rainfall Observations to Rainfall Estimation
			52.2.2 Evaluations and Inter-comparisons of Satellite-Based Rainfall Estimates: Choosing a Rainfall Product
		52.3 Drought Risk Management
			52.3.1 Rainfall-Based Drought Indicators
				52.3.1.1 Single-Variable Indicators: Rainfall Anomalies/Indices
				52.3.1.2 Multi-variable Indicators: Anomalies/Indices and Models
			52.3.2 Hydrological Models for Drought Assessment
			52.3.3 Crop Water Stress and Crop Yield Modelling
			52.3.4 Cross-Cutting Approaches
				52.3.4.1 Drought and Famine Early Warning Systems (EWS)
				52.3.4.2 Weather Index-Based Insurance (WII)
		52.4 Summary and Outlook
		References
	Chapter 53: Two Decades of Urban Hydroclimatological Studies Have Yielded Discovery and Societal Benefits
		53.1 Introduction
		53.2 The ``Urban Precipitation Effect´´
		53.3 Urban Impacts on Winter Precipitation
		53.4 Land Surface Hydrological Response and Water Management
		53.5 Urbanization and the Energy-Food-Water Nexus
		53.6 Concluding Statements
		References
	Chapter 54: Validation of Climate Models
		54.1 The Importance of Validation
		54.2 Precipitation: The Privileged Metric for Validation
		54.3 Basic Comparisons
		54.4 Quality Standards in the Validation of Climate Models
		54.5 A Checklist for Validation of Climate Models
		References
	Chapter 55: Extreme Precipitation in the Himalayan Landslide Hotspot
		55.1 Introduction
		55.2 Rainfall and Landslide Data
			55.2.1 GFDL FLOR
			55.2.2 TMPA
			55.2.3 Landslide Data
		55.3 Methods
		55.4 Results
			55.4.1 Regional Patterns in Extreme Precipitation
			55.4.2 Annual Variability
			55.4.3 Seasonal Variability
			55.4.4 Monthly Variability
		55.5 Discussion
		55.6 Conclusions
		References
	Chapter 56: The Value of Satellite Rainfall Estimates in Agriculture and Food Security
		56.1 Introduction
		56.2 The Value of Satellite Rainfall Estimates in Agriculture and Food Security
			56.2.1 Climate Services in Agriculture
			56.2.2 Challenges to Available Climate Data in Africa
			56.2.3 The Value of Satellite Data to Overcome Data Availability Challenges
		56.3 Specific Applications of Satellite Rainfall Estimates in Agriculture
			56.3.1 Enhancing National Climate Services (ENACTS)
			56.3.2 Rwanda Climate Services for Agriculture Project
			56.3.3 Weather Index Insurance
		56.4 Summary
		References
	Chapter 57: Using Satellite Estimates of Precipitation for Fire Danger Rating
		57.1 Introduction
		57.2 The Canadian Fire Weather Index System and the Global Fire Weather Database
		57.3 The 2017 Fire Season in British Columbia, Canada
		57.4 The 2017 Fire Storm in Central Chile
		57.5 The 2018 Attica Fires Near Athens, Greece
		57.6 Fire Activity Over Western Indonesia, 2015-2018
		57.7 Conclusions
		References
	Chapter 58: Variability of Satellite Sea Surface Salinity Under Rainfall
		58.1 Introduction
		58.2 Data and Method
			58.2.1 Salinity and Wind Speed Data
			58.2.2 Rain Rate Data
			58.2.3 Method
				58.2.3.1 Salinity Anomalies
				58.2.3.2 Detection of Rain History
				58.2.3.3 Filtering of Non-rainy Processes and DeltaS Versus Instantaneous RR Relationship
		58.3 Results
			58.3.1 Intercomparison of RR and SSS Products
			58.3.2 Which Is the Imprint of Rain History on Salinity Anomalies?
			58.3.3 Variability of the Relationship Between Salinity Freshening and Rain Rate as Function of Wind Speed
		58.4 Discussion and Conclusion
		References




نظرات کاربران