دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vincenzo Levizzani (editor), Christopher Kidd (editor), Dalia B. Kirschbaum (editor), Christian D. Kummerow (editor), Kenji Nakamura (editor), F. Joseph Turk (editor) سری: ISBN (شابک) : 303035797X, 9783030357979 ناشر: Springer سال نشر: 2020 تعداد صفحات: 797 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 41 مگابایت
در صورت تبدیل فایل کتاب Satellite Precipitation Measurement: Volume 2 (Advances in Global Change Research, 69) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اندازهگیری بارش ماهوارهای: جلد 2 (پیشرفتها در تحقیقات تغییر جهانی، 69) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی از اندازه گیری بارش از فضا ارائه می دهد، که در طول دو دهه گذشته پیشرفت های قابل توجهی داشته است. این عمدتاً به دلیل مأموریت اندازهگیری بارندگی استوایی (TRMM)، مأموریت اندازهگیری بارش جهانی (GPM)، CloudSat و مجموعهای از ماهوارههایی است که به دقت نگهداری میشوند که میزبان حسگرهای مایکروویو غیرفعال هستند. این کتاب مجدداً به کتاب قبلی، اندازهگیری بارش از فضا، ویرایش شده توسط V. Levizzani، P. Bauer و F. J. Turk، که با Springer در سال 2007 منتشر شده بود، بازبینی میکند. سپس. این کتاب کمکهای بینظیری از کارشناسان میدانی و گروه کاری بینالمللی بارش (IPWG) ارائه میکند.
این کتاب مورد توجه هواشناسان، آبشناسان، اقلیم شناسان، مقامات مدیریت آب، دانش آموزان در سطوح مختلف و بسیاری از طرف های دیگر علاقه مند به استفاده از مجموعه داده های بارش ماهواره ای هستند.
This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG).
The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
Preface Acknowledgments Contents of Volume 2 Contents of Volume 1 List of Figures List of Tables Contributors Acronyms Part IV: Validation Chapter 25: The IPWG Satellite Precipitation Validation Effort 25.1 Introduction 25.2 Current Validation Work: Data and Methodological Approach 25.3 Examples of IPWG Validation 25.3.1 Regional Analysis Over Japan Region 25.3.2 Seasonal Studies Over South America 25.3.3 Examples of IPWG-Related Studies 25.4 Future Validation Efforts 25.5 Conclusions References Chapter 26: The GPM Ground Validation Program 26.1 Overview 26.1.1 GV Measurement Synergy 26.2 Validation Instruments, Data, and Examples 26.2.1 Primary Datasets 26.2.2 Example Applications of VN Datasets 26.2.3 Validation Using GV-MRMS 26.2.4 Application to Verification of GPM L1SRs 26.3 Physical Validation Activities 26.4 Validation of the GPM IMERG Product 26.4.1 Examples of IMERG Validation Over South Korea 26.4.2 Selected Examples of IMERG Validation Over CONUS 26.5 Summary and Moving Forward References Chapter 27: The GPM DPR Validation Program 27.1 Introduction 27.2 Calibration 27.3 Ground Ka-Radar Experiment 27.3.1 Measurements 27.3.2 Results 27.4 Comparisons of DPR Products with Ground Observations 27.4.1 GPM/DPR Ground Validation Comparing with Rain Gauge Data Over Japan 27.4.2 GPM/DPR Ground Validation with MRMS/NMQ Data Over the US 27.4.3 Surface Snow Flag in the Latest DPR Product 27.5 Summary References Chapter 28: Error and Uncertainty Characterization 28.1 Uncertainty Sources of Satellite Precipitation Products 28.2 Methods for Assessing Satellite Precipitation Products 28.2.1 The Benchmark 28.2.2 Verification Metrics 28.2.3 Triple Collocation Analysis 28.3 Error and Uncertainty Models 28.4 Summary of the Performance of the Main Satellite Precipitation Products References Chapter 29: Multiscale Evaluation of Satellite Precipitation Products: Effective Resolution of IMERG 29.1 Introduction 29.2 Data 29.2.1 IMERG 29.2.2 MRMS Gauge-Adjusted Radar QPE 29.3 Method: Spectral Analysis in the Wavelet Domain 29.3.1 Rationale 29.3.2 Implementation 29.3.3 Illustrative Case Study 29.4 Results 29.5 Conclusions Appendix: Two-Dimensional Discrete Orthogonal Decomposition with the Haar Wavelet Wavelets Functions in One Dimension and N Dimensions The Haar Discrete Orthogonal Wavelets in One and Two Dimensions References Chapter 30: Remote Sensing of Orographic Precipitation 30.1 Introduction 30.2 Orographic Precipitation Measurement 30.3 Ground-Validation 30.4 Physical-Basis of Retrieval Errors 30.5 Summary References Chapter 31: Integrated Multi-satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on S... 31.1 Introduction 31.2 Spaceborne and Ground-Based Precipitation Datasets 31.2.1 Dual-Frequency Phased Array Radar 31.2.2 GPM Microwave Imager 31.2.3 Integrated Multi-satellitE Retrievals for GPM 31.2.4 Ground-Based Reference Precipitation 31.3 Impact of Precipitation Typology on Satellite-Based Active, Passive and Merged Precipitation Estimation 31.3.1 DPR QPE and Precipitation Typology 31.3.2 GMI QPE and Precipitation Typology 31.3.3 IMERG and Precipitation Typology 31.4 Conclusion References Chapter 32: Hydrologic Validation and Flood Analysis 32.1 Introduction 32.2 Space-Time Validation Framework 32.2.1 Point Based Evaluation 32.2.2 River Network Based Multiscale Valuation 32.2.3 River Network Based Error Dependence 32.3 Conclusions References Chapter 33: Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling 33.1 Introduction 33.2 Data and Methods 33.2.1 P Datasets 33.2.2 Performance Evaluation Using Gauge Observations 33.2.3 Performance Evaluation Using Hydrological Modeling 33.3 Results and Discussion 33.3.1 Performance in Terms of Temporal Dynamics 33.3.2 Performance in Terms of Climate Indices 33.3.3 Performance Evaluation Using Hydrological Modeling 33.4 Conclusions References Chapter 34: OceanRAIN - The Global Ocean Surface-Reference Dataset for Characterization, Validation and Evaluation of the Wate... 34.1 Introduction 34.2 The OceanRAIN Optical Disdrometer ODM470 34.3 Data Ingest and Data Set Construction 34.4 OceanRAIN Data Sets 34.5 Applications and Validation 34.5.1 Precipitation Characterization 34.5.2 The Point-to-Area Representativeness 34.5.3 IMERG Validation 34.6 Conclusions and Future Outlook References Part V: Observed Characteristics of Precipitation Chapter 35: GPCP and the Global Characteristics of Precipitation 35.1 Introduction 35.2 GPCP Monthly Analysis Technique 35.3 Global Precipitation Climatology 35.4 Variations in Global Mean Precipitation (1979-2017) 35.5 Patterns of Precipitation Variation and Trends 35.6 Trends in Precipitation Intensity at the Monthly Scale 35.7 Summary References Chapter 36: Global Snowfall Detection and Measurement 36.1 Introduction 36.2 Global Snowfall: CloudSat´s Recent Contributions 36.3 CloudSat Snowfall Detection and QPE Algorithm 36.4 Global Snowfall Characteristics 36.4.1 CloudSat Sampling 36.4.2 Snowfall Occurrence Statistics 36.4.3 CPR Reflectivity Variability: Snowfall Events 36.4.4 Snowfall QPE 36.5 Concluding Remarks References Chapter 37: Snowfall Detection by Spaceborne Radars 37.1 Introduction 37.2 Classical Methods to Determine Surface Precipitation Types 37.3 Vertical Phase Distribution from Spaceborne Radars 37.4 Use of Dual-Frequency Observations 37.5 Future Directions References Chapter 38: On the Duration and Life Cycle of Precipitation Systems in the Tropics 38.1 Introduction 38.2 The Climatology and Morphology of the MCS 38.2.1 Background and Robust Features 38.2.2 TOOCAN Specific Features of Tropical MCS 38.3 Precipitation and MCS Duration 38.3.1 The Precipitation Totals and the Degree of Organization of Convection 38.3.2 The Precipitation Totals and the System Duration 38.4 Precipitation and the MCS Life Cycle 38.4.1 The Linear Growth/Decay Model for the Cold Cloud Shield Life Cycle 38.4.2 Compositing GEO and LEO Along the Life Cycle 38.5 Conclusions References Chapter 39: Observational Characteristics of Warm-Type Heavy Rainfall 39.1 Introduction 39.2 Data and Analysis Method 39.3 Comparison Between Korea and Oklahoma 39.4 General Features Found Over the East Asian Monsoon Area 39.5 Role of Collision and Coalescence Processes 39.6 Conclusions References Chapter 40: Satellite Precipitation Measurement and Extreme Rainfall 40.1 Introduction 40.1.1 Physical Principles of Satellite Rainfall Measurements 40.1.2 Selected Satellite QPE Products 40.2 Statistical Distribution of Rainfall Extremes 40.2.1 Average and Maximum Rainfall 40.2.2 Thresholds, Percentiles and Spatial Distribution of Daily Extremes 40.3 Application of Satellite QPE to Extreme Events 40.3.1 Rainfall Extremes at the Daily Scale 40.3.2 Daily Rainfall Extremes in Relation to Cyclonic Activity 40.3.3 Other Applications of SPPs with Respect to Rainfall Extremes 40.4 Verification of Satellite QPE Extremes with Respect to In-Situ Rain Gauge Observations 40.5 Conclusions and Future Directions in Satellite QPEs for Extreme Events Measurements References Chapter 41: Rainfall Trends in East Africa from an Ensemble of IR-Based Satellite Products 41.1 Introduction 41.2 Data and Methods 41.2.1 Satellite Products 41.2.2 Rainfall Indices and Trend Analysis Methodology 41.3 Rainfall Seasonality and Variability 41.4 Trend Results 41.4.1 Trend Analysis of Annual Rainfall Indices 41.4.2 Trend Analysis of Seasonal Rainfall Indices 41.4.2.1 January-February (JF) Season 41.4.2.2 March-April-May (MAM) Season 41.4.2.3 June-July-August-September (JJAS) Season 41.4.2.4 October-November-December (OND) season 41.5 Conclusions References Chapter 42: Heavy Precipitation Systems in the Mediterranean Area: The Role of GPM 42.1 Introduction 42.2 Satellite Precipitation Products 42.3 Isolated Deep-Convective Systems 42.4 Mesoscale Convective Systems 42.5 Medicanes 42.6 Final Remarks References Chapter 43: Dryland Precipitation Climatology from Satellite Observations 43.1 Introduction 43.2 Background on Dryland Climate 43.3 Accuracy of Satellite Precipitation Estimates for Dryland Regions 43.4 Satellite-Derived Climatological Properties of Dryland Precipitation 43.5 Quasi-Global Dryland Precipitation Climatology from TRMM Observations 43.6 Conclusions and Recommendations References Chapter 44: Hailfall Detection 44.1 Physical Basis 44.2 Microwave Imager and Active Radar Retrievals 44.3 Microwave Sounder Retrievals 44.3.1 MicroWave Cloud Classification (MWCC) 44.3.2 Hail Detection with MWCC Method 44.3.3 NOAA AMSU-b/MHS 44.4 Summary References Chapter 45: Improving High-Latitude and Cold Region Precipitation Analysis 45.1 Introduction 45.2 Utilizing CloudSat to Assess High Latitude Precipitation 45.2.1 Analysis of Zonal Precipitation Distribution Over Ocean 45.2.2 Regional Analysis and Precipitation Pattern 45.3 Utilizing GRACE to Assess Cold Region Precipitation 45.4 Concluding Remarks References Chapter 46: Latent Heating Retrievals from Satellite Observations 46.1 Introduction 46.2 The Spectral Latent Heating (SLH) Algorithm 46.2.1 Latent Heating Retrieval for the Tropical Region 46.2.2 SLH Algorithm for Mid Latitudes 46.2.2.1 Construction of LUTs 46.2.2.2 SLH Retrieval from GPM KuPR: Consistency Check and Performance 46.3 Convective and Stratiform Heating (CSH) Algorithm 46.3.1 CSH Algorithm for Tropical Region 46.3.1.1 Cases for CSH Look-Up Table 46.3.1.2 Updated CSH 46.3.2 CSH for High Latitudes 46.3.2.1 NU-WRF and Cases 46.3.2.2 NU-WRF and Look-Up Tables 46.3.2.3 Consistency Check 46.4 Summary and Future Issues References Part VI: Applications Chapter 47: Operational Applications of Global Precipitation Measurement Observations 47.1 Introduction 47.2 Background and Methods 47.2.1 GPM 47.2.2 Data 47.2.3 Motivation 47.2.4 End User Interaction 47.3 Applications 47.3.1 Landslides/Mudslides 47.3.2 Flooding 47.3.3 Atmospheric Rivers 47.3.4 Rain Gauge Verification 47.3.5 Additional Applications 47.3.5.1 Supporting High Impact Events 47.3.5.2 Precipitation - Applications Related to Snowfall 47.3.5.3 Hurricane Structure and Intensity 47.4 Conclusions References Chapter 48: Assimilation of Precipitation Observations from Space into Numerical Weather Prediction (NWP) 48.1 Introduction 48.1.1 Understanding the Remote Sensing of Precipitation 48.1.2 Applications of Space-Borne Precipitation Measurements 48.2 Precipitation Measurement from Space: Sensitivity Assessment 48.2.1 Sensitivity to Microphysical Properties 48.2.2 Sensitivity to the Surrounding Environment 48.3 Important Factors for the Physical Inversion and Data Assimilation of Precipitation Observations 48.3.1 The Theoretical and Mathematical Basis for the Inversion of Satellite Radiances 48.3.2 The Issue of Non-linearities When Assimilating Precipitation Measurements 48.3.3 Uncertainties in Radiative Transfer and Jacobians 48.3.4 Model-Related Limiting Factors in the Assimilation of Precipitation 48.4 The Assimilation of Precipitating Data: Different Methods and Perspectives 48.4.1 A Summary of Previous Efforts 48.4.2 Global Assimilation of Precipitation Affected Radiances at ECMWF 48.4.3 Global Assimilation of Precipitation Affected Radiances at JMA: Impacts on Tropical Cyclones 48.4.4 Assimilation of Precipitation Affected Radiances Using a 1D-Var + 4D-EnVar 48.5 Final Thoughts on Precipitation Data and Data Assimilation for Numerical Weather Prediction References Chapter 49: Precipitation Ensemble Data Assimilation in NWP Models References Chapter 50: PERSIANN-CDR for Hydrology and Hydro-climatic Applications 50.1 Introduction 50.2 Hydro-climatic Applications 50.2.1 RainSphere for Global Precipitation Analysis and Visualization 50.2.2 Evaluation of PERSIANN-CDR on Extreme Events 50.2.3 Evaluation of CMIP5 Model Precipitation 50.3 Hydrology Applications 50.3.1 Hydrologic Modeling 50.3.2 Rainfall Frequency Analysis Using Satellite-Retrieved Precipitation 50.4 Conclusions References Chapter 51: Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture 51.1 Introduction 51.2 SM2RAIN Algorithm 51.3 SM2RAIN-Derived Rainfall Products 51.3.1 SM2RAIN-CCI 51.3.2 SM2RAIN-ASCAT 51.4 Flood Modelling in Europe Through SM2RAIN-Derived Rainfall Products 51.4.1 In Situ and Satellite Datasets 51.4.2 MISDc Rainfall-Runoff Modelling 51.4.3 Results 51.5 Limitations and Future Directions References Chapter 52: Drought Risk Management Using Satellite-Based Rainfall Estimates 52.1 Introduction 52.2 Rainfall Monitoring for Drought Assessment 52.2.1 Evolution of Rainfall Observation Technology: From Rainfall Observations to Rainfall Estimation 52.2.2 Evaluations and Inter-comparisons of Satellite-Based Rainfall Estimates: Choosing a Rainfall Product 52.3 Drought Risk Management 52.3.1 Rainfall-Based Drought Indicators 52.3.1.1 Single-Variable Indicators: Rainfall Anomalies/Indices 52.3.1.2 Multi-variable Indicators: Anomalies/Indices and Models 52.3.2 Hydrological Models for Drought Assessment 52.3.3 Crop Water Stress and Crop Yield Modelling 52.3.4 Cross-Cutting Approaches 52.3.4.1 Drought and Famine Early Warning Systems (EWS) 52.3.4.2 Weather Index-Based Insurance (WII) 52.4 Summary and Outlook References Chapter 53: Two Decades of Urban Hydroclimatological Studies Have Yielded Discovery and Societal Benefits 53.1 Introduction 53.2 The ``Urban Precipitation Effect´´ 53.3 Urban Impacts on Winter Precipitation 53.4 Land Surface Hydrological Response and Water Management 53.5 Urbanization and the Energy-Food-Water Nexus 53.6 Concluding Statements References Chapter 54: Validation of Climate Models 54.1 The Importance of Validation 54.2 Precipitation: The Privileged Metric for Validation 54.3 Basic Comparisons 54.4 Quality Standards in the Validation of Climate Models 54.5 A Checklist for Validation of Climate Models References Chapter 55: Extreme Precipitation in the Himalayan Landslide Hotspot 55.1 Introduction 55.2 Rainfall and Landslide Data 55.2.1 GFDL FLOR 55.2.2 TMPA 55.2.3 Landslide Data 55.3 Methods 55.4 Results 55.4.1 Regional Patterns in Extreme Precipitation 55.4.2 Annual Variability 55.4.3 Seasonal Variability 55.4.4 Monthly Variability 55.5 Discussion 55.6 Conclusions References Chapter 56: The Value of Satellite Rainfall Estimates in Agriculture and Food Security 56.1 Introduction 56.2 The Value of Satellite Rainfall Estimates in Agriculture and Food Security 56.2.1 Climate Services in Agriculture 56.2.2 Challenges to Available Climate Data in Africa 56.2.3 The Value of Satellite Data to Overcome Data Availability Challenges 56.3 Specific Applications of Satellite Rainfall Estimates in Agriculture 56.3.1 Enhancing National Climate Services (ENACTS) 56.3.2 Rwanda Climate Services for Agriculture Project 56.3.3 Weather Index Insurance 56.4 Summary References Chapter 57: Using Satellite Estimates of Precipitation for Fire Danger Rating 57.1 Introduction 57.2 The Canadian Fire Weather Index System and the Global Fire Weather Database 57.3 The 2017 Fire Season in British Columbia, Canada 57.4 The 2017 Fire Storm in Central Chile 57.5 The 2018 Attica Fires Near Athens, Greece 57.6 Fire Activity Over Western Indonesia, 2015-2018 57.7 Conclusions References Chapter 58: Variability of Satellite Sea Surface Salinity Under Rainfall 58.1 Introduction 58.2 Data and Method 58.2.1 Salinity and Wind Speed Data 58.2.2 Rain Rate Data 58.2.3 Method 58.2.3.1 Salinity Anomalies 58.2.3.2 Detection of Rain History 58.2.3.3 Filtering of Non-rainy Processes and DeltaS Versus Instantaneous RR Relationship 58.3 Results 58.3.1 Intercomparison of RR and SSS Products 58.3.2 Which Is the Imprint of Rain History on Salinity Anomalies? 58.3.3 Variability of the Relationship Between Salinity Freshening and Rain Rate as Function of Wind Speed 58.4 Discussion and Conclusion References