دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vincenzo Levizzani (editor), Christopher Kidd (editor), Dalia B. Kirschbaum (editor), Christian D. Kummerow (editor), Kenji Nakamura (editor), F. Joseph Turk (editor) سری: ISBN (شابک) : 3030245675, 9783030245672 ناشر: Springer سال نشر: 2020 تعداد صفحات: 502 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Satellite Precipitation Measurement: Volume 1 (Advances in Global Change Research, 67) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اندازهگیری بارش ماهوارهای: جلد 1 (پیشرفتها در تحقیقات تغییر جهانی، 67) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی از اندازهگیری بارش از فضا را ارائه میدهد که در طول دو دهه گذشته پیشرفتهای قابل توجهی داشته است. این عمدتاً به دلیل مأموریت اندازهگیری بارندگی استوایی (TRMM)، مأموریت اندازهگیری بارش جهانی (GPM)، CloudSat و مجموعهای از ماهوارههایی است که به دقت نگهداری میشوند که میزبان حسگرهای مایکروویو غیرفعال هستند. این کتاب مجدداً به کتاب قبلی، اندازهگیری بارش از فضا، ویرایش شده توسط V. Levizzani، P. Bauer و F. J. Turk، که با Springer در سال 2007 منتشر شده بود، بازبینی میکند. سپس. این کتاب کمکهای بینظیری از کارشناسان میدانی و گروه کاری بینالمللی بارش (IPWG) ارائه میکند.
این کتاب مورد توجه هواشناسان، هیدرولوژیستها، اقلیمشناسان، مقامات مدیریت آب، دانشجویان در رشتههای مختلف خواهد بود. سطوح و بسیاری دیگر از طرفهایی که علاقهمند به استفاده از مجموعه دادههای بارش ماهوارهای هستند.
فصل «TAMSAT» تحت مجوز Creative Commons Attribution 4.0
بینالمللی از طریق link.springer.com دسترسی آزاد
دارد.
This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG).
The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
Chapter “TAMSAT” is available open access under a
Creative Commons Attribution 4.0 International License via
link.springer.com.
Preface Acknowledgments Contents of Volume 1 Contents of Volume 2 List of Figures List of Tables Contributors Acronyms Part I: Status of Observations and Satellite Programs Chapter 1: The Global Precipitation Measurement (GPM) Mission 1.1 Introduction 1.2 Satellite Sensors and Characteristics 1.3 Products 1.4 Validation 1.5 Advancing Precipitation Science 1.5.1 Snowfall and Cold-Season Precipitation 1.5.2 Drop Size Distributions (DSDs) 1.5.3 Latent Heating Products 1.6 Applications and Outreach 1.6.1 Precipitation Extremes, Food Security, and Health 1.6.2 Assimilation and Numerical Modelling 1.6.3 Outreach Activities 1.7 Beyond GPM References Chapter 2: Status of the CloudSat Mission 2.1 CloudSat Instrument and Measurements 2.2 Limitations and Benefits of CloudSat for Precipitation Sensing 2.3 CloudSat Mission Operations History 2.4 CloudSat Data Products 2.4.1 Precipitation Identification and Classification 2.4.2 Quantifying Snowfall 2.4.3 Quantifying Rainfall References Chapter 3: The Megha-Tropiques Mission After Seven Years in Space 3.1 Introduction 3.2 The Status of the Mission 3.2.1 Orbital Aspects 3.2.2 The MADRAS Radiometer 3.2.3 The SAPHIR Sounder 3.3 Addressing the Scientific Objectives 3.3.1 Precipitation Related Remote Sensing Products from MT Payloads 3.3.2 Tropical Science 3.3.2.1 Hydrometeorology 3.3.2.2 Deep Convection 3.4 Addressing the Operational Objective 3.4.1 Upstream Investigations 3.4.2 Operational Applications 3.5 Conclusions and Outlook References Chapter 4: Microwave Sensors, Imagers and Sounders 4.1 Introduction 4.2 Characteristics of Microwave Imagers 4.2.1 The Electrically Scanning Microwave Radiometers (ESMRs) 4.2.2 The Scanning Multichannel Microwave Radiometer (SMMR) 4.2.3 The Special Sensor Microwave Imager (SSM/I) 4.2.4 The TRMM Microwave Imager (TMI) 4.2.5 WindSat 4.2.6 Advanced Microwave Scanning Radiometer (AMSR) Series 4.2.7 GPM Microwave Imager (GMI) 4.3 Characteristics of Microwave Sounders 4.3.1 Microwave Sounding Unit (MSU) 4.3.2 Special Sensor Microwave Temperature and Temperature-2 (SSM/T and SSM/T2) 4.3.3 Special Sensor Microwave Imager Sounder (SSMIS) 4.3.4 Advanced Microwave Sounding Unit-A and -B (AMSU-A and AMSU-B) and the Microwave Humidity Sounder (MHS) 4.3.5 Sondeur Atmosphérique du Profil d´Humidité Intertropicale par Radiométrie (SAPHIR) 4.3.6 Advanced Technology Atmospheric Sounder (ATMS) 4.4 Summary and Future References Chapter 5: Microwave and Sub-mm Wave Sensors: A European Perspective 5.1 Introduction 5.1.1 EPS-SG Microwave Imaging (MWI) Mission 5.1.2 EPS-SG Ice Cloud Imaging (ICI) Mission 5.2 MWI and ICI Data Processing and Products 5.3 Applications 5.3.1 Numerical Weather Prediction 5.3.2 Climate Monitoring 5.3.3 Nowcasting 5.4 Copernicus Imaging Microwave Radiometry (CIMR) Mission 5.5 Summary References Chapter 6: Plans for Future Missions 6.1 Requirements of Future Global Precipitation Measurement 6.2 Technical Developments 6.2.1 Radar 6.2.2 Microwave Radiometer 6.2.3 Infrared Radiometer 6.3 Proposed Mission Concepts 6.3.1 Missions and Sensors Moving Ahead 6.3.2 Missions in Planning Stages References Part II: Retrieval Techniques, Algorithms and Sensors Chapter 7: Introduction to Passive Microwave Retrieval Methods 7.1 Theory 7.2 Sensors and Algorithms 7.2.1 The ESMR Era 7.2.2 The SMMR Era 7.2.3 The SSM/I Era 7.2.4 The TRMM and GPM Era 7.2.5 The NOAA AMSU/ATMS Sensor Era References Chapter 8: The Goddard Profiling (GPROF) Precipitation Retrieval Algorithm 8.1 Introduction 8.2 GPROF a priori Database 8.2.1 Hydrometeor Profiles and Surface Precipitation 8.2.2 Ancillary Datasets 8.3 Satellite Sensor Pixel Preparation: GPROF Preprocessor 8.4 The GPROF Bayesian Retrieval Algorithm 8.5 Conclusions References Chapter 9: Precipitation Estimation from the Microwave Integrated Retrieval System (MiRS) 9.1 Background 9.2 Algorithm Description 9.3 Algorithm Components 9.4 Treatment of Hydrometeors 9.5 Retrieval Examples 9.6 Validation Results 9.7 Planned Operational Improvements 9.8 Conclusions and Future Work References Chapter 10: Introduction to Radar Rain Retrieval Methods 10.1 Introduction 10.2 Formulation of Radar Measurement of Rain 10.3 Rain Retrieval Algorithm 10.4 Surface Reference Technique (SRT) 10.5 Errors in Retrievals 10.6 Summary References Chapter 11: Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Mission´s Core Observatory 11.1 Dual-Frequency Precipitation Radar 11.2 Outline of the DPR Data Processing Algorithm 11.3 Outline of the DPR L2 Algorithm Modules 11.4 Special Features in the DPR Algorithm 11.5 Future of the DPR Algorithm References Chapter 12: DPR Dual-Frequency Precipitation Classification 12.1 Introduction 12.2 Precipitation Type Classification 12.3 Melting Layer Detection 12.4 Evaluation of the Dual-Frequency Classification Module 12.4.1 Comparison Between Dual-Frequency and TRMM Legacy Single Frequency Methods 12.4.2 Surface Snowfall Identification 12.4.3 Ground Validation for the Surface Snowfall Identification Algorithm References Chapter 13: Triple-Frequency Radar Retrievals 13.1 Introduction 13.1.1 Why Triple-Frequency Radars? 13.1.1.1 Why a Triple-Frequency Approach for Rain? 13.1.1.2 Why a Triple-Frequency Approach for Ice? 13.2 Triple-Frequency Datasets 13.3 Triple-Frequency Retrievals 13.4 Critical Issues and Open Questions 13.5 Recommendations for Future Work References Chapter 14: Precipitation Retrievals from Satellite Combined Radar and Radiometer Observations 14.1 Introduction 14.2 The GPM Combined Algorithm 14.2.1 Formulation 14.2.2 Areas Requiring Improvement 14.3 Brightness Temperature - PIA Relationships, Revisited 14.4 Summary and Conclusions References Chapter 15: Scattering of Hydrometeors 15.1 Scattering Methods 15.1.1 Rayleigh, Mie, and T-Matrix Methods 15.1.2 Effective Medium Approximation 15.1.3 Rayleigh Gans and Self-Similar Rayleigh Gans Approximation 15.1.4 Discrete Dipole Approximation (DDA) 15.1.5 Generalized Multiparticle Mie-Solution (GMM) 15.2 Hydrometeor Models 15.2.1 Liquid Hydrometeors 15.2.2 Ice and Snow 15.2.3 Melting Ice 15.3 Scattering Properties and Scattering Databases 15.3.1 Liquid Hydrometeors 15.3.2 Ice Crystals, Aggregates, and Rimed Particles 15.3.3 Melting Ice 15.3.4 Future Directions References Chapter 16: Radar Snowfall Measurement 16.1 Introduction 16.2 Radar Snowfall Retrieval Method 16.2.1 Factors Impacting Z - S Relations 16.2.2 A Z-S Relation 16.2.3 Issues Related to Detectability and Attenuation 16.3 Results from CloudSat Measurements 16.3.1 First Global Snowfall Map 16.3.2 Snow Cloud Structures 16.4 Guiding Passive Sensors for Snowfall Estimation 16.5 Concluding Remarks References Chapter 17: A 1DVAR-Based Snowfall Rate Algorithm for Passive Microwave Radiometers 17.1 Introduction 17.2 Data and Models 17.2.1 Instruments and Data 17.2.2 Logistic Regression 17.2.3 Radiative Transfer Model and 1DVAR 17.2.4 Ice Particle Terminal Velocity 17.3 Snowfall Detection 17.3.1 Satellite Module 17.3.2 Weather Module 17.3.3 Hybrid Algorithm 17.3.4 SD Filters 17.4 Snowfall Rate 17.4.1 Methodology 17.4.2 Calibration 17.5 Validation 17.5.1 SD Validation 17.5.2 SFR Validation 17.6 Summary and Conclusions References Chapter 18: X-Band Synthetic Aperture Radar Methods 18.1 Introduction 18.2 Evidence of Precipitation Signatures on X-SAR Imagery 18.3 Forward Model of SAR Response to Rainfall 18.3.1 SAR Observing Geometry and Response Model 18.3.2 Example of Precipitation-Affected SAR Scene 18.4 SAR Precipitation Retrieval Techniques 18.4.1 Data Pre-processing 18.4.2 Regressive Empirical Algorithm (REA) 18.4.3 Probability Matching Algorithm (PMA) 18.5 Applications 18.5.1 Improving SAR Retrieval Using Background Estimation 18.5.2 Statistical Approaches for Retrieval Validation 18.5.3 Case Study 18.6 Conclusion References Part III: Merged Precipitation Products Chapter 19: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG) 19.1 Introduction 19.2 Input Data Sets 19.3 IMERG Processing 19.4 IMERG Data Set Status 19.5 IMERG Performance and Examples 19.6 Status for Version 06 and Concluding Remarks References Chapter 20: Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era 20.1 Introduction 20.2 GSMaP Product List in the GPM Era 20.3 Algorithm Description 20.3.1 Overall Algorithm Framework 20.3.2 Outline of the PMW Algorithm 20.3.3 Methodology in the PMW Algorithm 20.3.4 Orographic/Non-orographic Rainfall Classification Scheme 20.3.5 Modifications Due to Sensor Specifications 20.3.6 Snowfall Estimation Method 20.3.7 PMW-IR Combined Algorithm 20.3.8 Gauge-Adjustment Algorithm 20.3.9 Brief Summary of Evolutions from V6 to V7 20.4 Validation Results of the GSMaP Products 20.4.1 Comparisons of the GSMaP Products Around Japan 20.4.2 Validation Using the US Radar Network 20.5 Conclusions References Chapter 21: Improving PERSIANN-CCS Using Passive Microwave Rainfall Estimation 21.1 Introduction 21.2 Re-calibration of PERSIANN-CCS 21.2.1 PERSIANN-CCS 21.2.2 Passive Microwave Adjustment of PERSIANN-CCS Estimation 21.3 Evaluation of Re-calibrated PERSIANN-CCS Estimation 21.4 Improving Warm Rain Estimation 21.5 Conclusions and Future Directions References Chapter 22: TAMSAT 22.1 The History of TAMSAT 22.2 TAMSAT Products 22.3 The TAMSAT Rainfall Estimation Approach 22.3.1 Overview 22.3.2 Calibration Method 22.3.3 Strengths and Limitations 22.4 Usage and Applications References Chapter 23: Algorithm and Data Improvements for Version 2.1 of the Climate Hazards Center´s InfraRed Precipitation with Statio... 23.1 Context - Increasing Food Insecurity and the CHIRPS2.0 Dataset 23.2 Description of the CHIRPS2.1 Methods 23.2.1 The CHIRPS2.1 Modeling Process 23.2.2 The CHPclim 2.1 Climatology 23.2.2.1 Localized Correlation Estimates 23.2.2.2 Interpolation of Model Residuals 23.2.2.3 Adjusting the CHTclim Climatology 23.3 Experimental Results for the CHIRPS 2.1 Redistribution Process 23.3.1 CHIRP2.0 Systematic Bias Analysis 23.3.2 CHIRP2.1 Systematic Bias Corrections 23.3.3 Changes in the Ability to Detect Low Precipitation Events 23.4 Conclusions References Chapter 24: Merging the Infrared Fleet and the Microwave Constellation for Tropical Hydrometeorology (TAPEER) and Global Clima... 24.1 Introduction 24.2 Merging Satellite Observations for Accumulation and Uncertainty Estimation 24.2.1 Estimation of the Accumulated Precipitation 24.2.1.1 Background 24.2.1.2 Performance Sensitivity 24.2.1.3 Sensitivity to the Configuration of the Microwave Constellation 24.2.2 Estimation of the Uncertainty 24.2.2.1 Background 24.2.2.2 The Sampling Uncertainty 24.2.2.3 Bias Correction Scheme 24.2.2.4 Summary and the 1 x 1 x 1 Day Optimum 24.3 Implementations for Tropical Water Cycle 24.3.1 Data 24.3.1.1 The Geostationary Data 24.3.1.2 The BRAIN Data 24.3.2 The TAPEER Implementation 24.3.2.1 Common Aspects 24.3.2.2 TAPEER 1.0 with MADRAS 24.3.2.3 TAPEER 1.5 with SAPHIR 24.3.3 TAPEER-GPROFv5-PRPS 24.3.3.1 The GPROF and PRPS Data 24.3.3.2 TAPEER 2.0 24.3.3.3 Future Evolution 24.4 Implementation for Climate Monitoring 24.4.1 GIRAFE 1.0 - GPROFv5 24.4.1.1 First Results 24.4.1.2 Sensitivity to the Constellation Configuration 24.4.2 Future Evolution 24.4.2.1 The Evolution of the HOAPS Instantaneous Precipitation Rate Estimate 24.4.2.2 Use of Sounders 24.4.2.3 Extension to the Poles and to Snow 24.4.2.4 The Time Dependent Uncertainty Estimation 24.5 Conclusions References Correction to: TAMSAT Correction to: Chapter 22 in: V. Levizzani et al. (eds.), Satellite Precipitation Measurement, Advances in Global Change Resea...