دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 6 نویسندگان: Gerard Maral, Michel Bousquet, Zhili Sun سری: ISBN (شابک) : 1119382084, 9781119382089 ناشر: John Wiley & Sons Inc سال نشر: 2020 تعداد صفحات: 794 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Satellite Communications Systems: Systems, Techniques and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های ارتباطی ماهواره ای: سیستم ها ، تکنیک ها و فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش ششم اصلاح شده و به روز شده سیستم های ارتباطات ماهواره ای حاوی اطلاعاتی در مورد آخرین پیشرفت های مربوط به سیستم های ارتباطات ماهواره ای، فناوری ها، معماری شبکه و الزامات جدید خدمات و برنامه های کاربردی است. نویسندگان – کارشناسان مورد توجه در موضوع – سیستمها و فنآوریهای ارتباطی ماهوارهای را پوشش میدهد و موضوعات مربوطه در مورد فناوریهای ارتباطات و شبکه، مفاهیم، تکنیکها و الگوریتمها را بررسی میکند. اطلاعات جدید در این نسخه، اطلاعات مربوط به اینترنت کار با سیستم های ماهواره ای پهن باند، پوشش فشرده تر فناوری های باند Ka، ماهواره با توان بالای GEO (HTS)، صورت های فلکی LEO و پتانسیل پشتیبانی از خدمات اینترنت پهن باند جدید فعلی و همچنین پیشرفت های آینده برای جهانی است. زیرساخت اطلاعاتی
نویسندگان جزئیاتی را در مورد سیستمهای ارتباط دیجیتال و شبکههای باند پهن ارائه میکنند تا به محققان سطح بالا و مهندسان حرفهای مرجع معتبری ارائه دهند. وب سایت همراه، اسلایدهایی را برای آموزش مربیان و یادگیری دانش آموزان ارائه می دهد. علاوه بر این، کتاب در قالب کاربر پسند طراحی شده است.
The revised and updated sixth edition of Satellite Communications Systems contains information on the most recent advances related to satellite communications systems, technologies, network architectures and new requirements of services and applications. The authors – noted experts on the topic – cover the state-of-the-art satellite communication systems and technologies and examine the relevant topics concerning communication and network technologies, concepts, techniques and algorithms. New to this edition is information on internetworking with the broadband satellite systems, more intensive coverage of Ka band technologies, GEO high throughput satellite (HTS), LEO constellations and the potential to support the current new broadband Internet services as well as future developments for global information infrastructure.
The authors offer details on digital communication systems and broadband networks in order to provide high-level researchers and professional engineers an authoritative reference. The companion website provides slides for instructors to teach and for students to learn. In addition, the book is designed in a user-friendly format.Cover Title Page Copyright Contents Acknowledgement Acronyms Notations Chapter 1 Introduction 1.1 Birth of Satellite Communications 1.2 Development of Satellite Communications 1.3 Configuration of a Satellite Communications System 1.3.1 Communications links 1.3.2 The space segment 1.3.3 The ground segment 1.4 Types of Orbit 1.5 Radio Regulations 1.5.1 The ITU organisation 1.5.2 Space radiocommunications services 1.5.3 Frequency allocation 1.6 Technology Trends 1.7 Services 1.8 The Way Forward References Chapter 2 Orbits and Related Issues 2.1 Keplerian Orbits 2.1.1 Kepler\'s laws 2.1.2 Newton\'s law 2.1.3 Relative movement of two point bodies 2.1.4 Orbital parameters 2.1.5 The earth\'s orbit 2.1.6 Earth–satellite geometry 2.1.7 Eclipses of the sun 2.1.8 Sun–satellite conjunction 2.2 Useful Orbits for Satellite Communication 2.2.1 Elliptical orbits with non‐zero inclination 2.2.2 Geosynchronous elliptic orbits with zero inclination 2.2.3 Geosynchronous circular orbits with non‐zero inclination 2.2.4 Sun‐synchronous circular orbits with zero inclination 2.2.5 Geostationary satellite orbits 2.3 Perturbations of Orbits 2.3.1 The nature of perturbations 2.3.2 The effect of perturbations; orbit perturbation 2.3.3 Perturbations of the orbit of geostationary satellites 2.3.4 Orbit corrections: station keeping of geostationary satellites 2.4 Conclusion References Chapter 3 Baseband Digital Signals, Packet Networks, and Quality of Service (QoS) 3.1 Baseband Signals 3.1.1 Digital telephone signal 3.1.2 Sound signals 3.1.3 Television signals 3.1.4 Data and multimedia signals 3.2 Performance Objectives 3.2.1 Telephone 3.2.2 Sound 3.2.3 Television 3.2.4 Data 3.3 Availability Objectives 3.4 Delay 3.4.1 Delay in the terrestrial network 3.4.2 Propagation delay over satellite links 3.4.3 Baseband‐signal processing time 3.4.4 Protocol‐induced delay 3.5 IP Packet Transfer QOS and Network Performance 3.5.1 Definition of QoS in the ETSI and ITU‐T standards 3.5.2 IP packet transfer performance parameters 3.5.3 IP service availability parameters 3.5.4 IP network QoS class 3.6 Conclusion References Chapter 4 Digital Communications Techniques 4.1 Baseband Formatting 4.1.1 Encryption 4.1.2 Scrambling 4.2 Digital Modulation 4.2.1 Two‐state modulation– BPSK and DE‐BPSK 4.2.2 Four‐state modulation – QPSK 4.2.3 Variants of QPSK 4.2.4 Higher‐order PSK and APSK 4.2.5 Spectrum of unfiltered modulated carriers 4.2.6 Demodulation 4.2.7 Modulation spectral efficiency 4.3 Channel Coding 4.3.1 Block encoding and convolutional encoding 4.3.2 Channel decoding 4.3.3 Concatenated encoding 4.3.4 Interleaving 4.4 Channel Coding and the Power–Bandwidth Trade‐Off 4.4.1 Coding with variable bandwidth 4.4.2 Coding with constant bandwidth 4.4.3 Conclusion 4.5 Coded Modulation 4.5.1 Trellis‐coded modulation 4.5.2 Block‐coded modulation 4.5.3 Decoding coded modulation 4.5.4 Multilevel trellis‐coded modulation 4.5.5 TCM using a multidimensional signal set 4.5.6 Performance of coded modulations 4.6 End‐To‐End Error Control 4.7 Digital Video Broadcasting via Satellite (DVB‐S) 4.7.1 Transmission system 4.7.2 Error performance requirements 4.8 Second Generation DVB‐S (DVB‐S2) 4.8.1 New technology in DVB‐S2 4.8.2 Transmission system architecture 4.8.3 Error performance 4.8.4 FEC encoding 4.9 New Features of DVB‐S2X 4.10 Conclusion 4.10.1 Digital transmission of telephony 4.10.2 Digital broadcasting of television References Chapter 5 Uplink, Downlink, and Overall Link Performance; Intersatellite Links 5.1 Configuration of a Link 5.2 Antenna Parameters 5.2.1 Gain 5.2.2 Radiation pattern and angular beamwidth 5.2.3 Polarisation 5.3 Radiated Power 5.3.1 Effective isotropic radiated power (EIRP) 5.3.2 Power flux density 5.4 Received Signal Power 5.4.1 Power captured by the receiving antenna and free space loss 5.4.2 Additional losses 5.4.3 Conclusion 5.5 Noise Power Spectral Density at the Receiver Input 5.5.1 The origins of noise 5.5.2 Noise characterisation 5.5.3 Noise temperature of an antenna 5.5.4 System noise temperature 5.5.5 Conclusion 5.6 Individual Link Performance 5.6.1 Carrier power to noise power spectral density ratio at receiver input 5.6.2 Clear sky uplink performance 5.6.3 Clear sky downlink performance 5.7 Influence of the Atmosphere 5.7.1 Impairments caused by rain 5.7.2 Other impairments 5.7.3 Link impairments – relative importance 5.7.4 Link performance under rain conditions 5.7.5 Conclusion 5.8 Mitigation of Atmospheric Impairments 5.8.1 Depolarisation mitigation 5.8.2 Attenuation mitigation 5.8.3 Site diversity 5.8.4 Adaptivity 5.8.5 Cost‐availability trade‐off 5.9 Overall Link Performance with Transparent Satellite 5.9.1 Characteristics of the satellite channel 5.9.2 Expression for (C/N0)T 5.9.3 Overall link performance for a transparent satellite without interference or intermodulation 5.10 Overall Link Performance with Regenerative Satellite 5.10.1 Linear satellite channel without interference 5.10.2 Nonlinear satellite channel without interference 5.10.3 Nonlinear satellite channel with interference 5.11 Link Performance with Multibeam Antenna Coverage vs. Monobeam Coverage 5.11.1 Advantages of multibeam coverage 5.11.2 Disadvantages of multibeam coverage 5.11.3 Conclusion 5.12 Intersatellite Link Performance 5.12.1 Frequency bands 5.12.2 Radio‐frequency links 5.12.3 Optical links 5.12.4 Conclusion References Chapter 6 Multiple Access 6.1 Layered Data Transmission 6.2 Traffic Parameters 6.2.1 Traffic intensity 6.2.2 Call blocking probability 6.2.3 Burstiness 6.2.4 Call delay probability 6.3 TRAFFIC ROUTING 6.3.1 One carrier per station‐to‐station link 6.3.2 One carrier per transmitting station 6.3.3 Comparison 6.4 Access Techniques 6.4.1 Access to a particular satellite channel (or transponder) 6.4.2 Multiple access to the satellite repeater 6.4.3 Performance evaluation – efficiency 6.5 Frequency Division Multiple Access (FDMA) 6.5.1 TDM/PSK/FDMA 6.5.2 SCPC/FDMA 6.5.3 Adjacent channel interference 6.5.4 Intermodulation 6.5.5 FDMA efficiency 6.5.6 Conclusion 6.6 Time Division Multiple Access (TDMA) 6.6.1 Burst generation 6.6.2 Frame structure 6.6.3 Burst reception 6.6.4 Synchronisation 6.6.5 TDMA efficiency 6.6.6 Conclusion 6.7 Code Division Multiple Access (CDMA) 6.7.1 Direct sequence (DS‐CDMA) 6.7.2 Frequency hopping CDMA (FH‐CDMA) 6.7.3 Code generation 6.7.4 Synchronisation 6.7.5 CDMA efficiency 6.7.6 Conclusion 6.8 Fixed and On‐Demand Assignment 6.8.1 The principle 6.8.2 Comparison between fixed and on‐demand assignment 6.8.3 Centralised or distributed management of on‐demand assignment 6.8.4 Conclusion 6.9 Random Access 6.9.1 Asynchronous protocols 6.9.2 Protocols with synchronisation 6.9.3 Protocols with assignment on demand 6.10 CONCLUSION References Chapter 7 Satellite Networks 7.1 Network Reference Models and Protocols 7.1.1 Layering principle 7.1.2 Open Systems Interconnection (OSI) reference model 7.1.3 IP reference model 7.2 Reference Architecture for Satellite Networks 7.3 Basic Characteristics of Satellite Networks 7.3.1 Satellite network topology 7.3.2 Types of link 7.3.3 Connectivity 7.4 Satellite On‐Board Connectivity 7.4.1 On‐board connectivity with transponder hopping 7.4.2 On‐board connectivity with transparent processing 7.4.3 On‐board connectivity with regenerative processing 7.4.4 On‐board connectivity with beam scanning (BFN – beam‐forming network) 7.5 CONNECTIVITY THROUGH INTERSATELLITE LINKS (ISLs) 7.5.1 Links between geostationary and low earth orbit satellites (GEO–LEO) 7.5.2 Links between geostationary satellites (GEO–GEO) 7.5.3 Links between low earth orbit satellites (LEO–LEO) 7.5.4 Conclusion 7.6 Satellite Broadcast Networks 7.6.1 Single uplink (one programme) per satellite channel 7.6.2 Several programmes per satellite channel 7.6.3 Single uplink with time division multiplexing (TDM) of programmes 7.6.4 Multiple uplinks with time division multiplexing (TDM) of programmes on downlink 7.7 Broadband Satellite Networks 7.7.1 Overview of DVB‐RCS/RCS2 and DVB‐S/S2/S2X networks 7.7.2 Protocol stack architecture for broadband satellite networks 7.7.3 Physical layer and MAC layer 7.7.4 Satellite MAC layer 7.7.5 Satellite Link Control layer 7.7.6 Quality of service 7.7.7 Network layer 7.7.8 Regenerative satellite mesh network architecture 7.8 Transmission Control Protocol 7.8.1 TCP segment header format 7.8.2 Connection setup and data transmission 7.8.3 Congestion control and flow control 7.8.4 Impact of satellite channel characteristics on TCP 7.8.5 TCP performance enhancement (PEP) protocols 7.9 IPV6 OVER SATELLITE NETWORKS 7.9.1 IPv6 basics 7.9.2 IPv6 transitions 7.9.3 IPv6 tunnelling through satellite networks 7.9.4 6to4 translation via satellite networks 7.10 CONCLUSION References Chapter 8 Earth Stations 8.1 Station Organisation 8.2 Radio‐Frequency Characteristics 8.2.1 Effective isotropic radiated power (EIRP) 8.2.2 Figure of merit of the station 8.2.3 Standards defined by international organisations and satellite operators 8.3 The Antenna Subsystem 8.3.1 Radiation characteristics (main lobe) 8.3.2 Side‐lobe radiation 8.3.3 Antenna noise temperature 8.3.4 Types of antenna 8.3.5 Pointing angles of an earth station antenna 8.3.6 Mountings to permit antenna pointing 8.3.7 Tracking 8.4 The Radio‐Frequency Subsystem 8.4.1 Receiving equipment 8.4.2 Transmission equipment 8.4.3 Redundancy 8.5 Communication Subsystems 8.5.1 Frequency translation 8.5.2 Amplification, filtering, and equalisation 8.5.3 Modems 8.6 The Network Interface Subsystem 8.6.1 Multiplexing and demultiplexing 8.6.2 Digital speech interpolation (DSI) 8.6.3 Digital circuit multiplication equipment (DCME) 8.6.4 Equipment specific to SCPC transmission 8.6.5 Ethernet port for IP network connections 8.7 Monitoring and Control; Auxiliary Equipment 8.7.1 Monitoring, alarms, and control (MAC) equipment 8.7.2 Electrical power 8.8 Conclusion References Chapter 9 The Communication Payload 9.1 Mission and Characteristics of the Payload 9.1.1 Functions of the payload 9.1.2 Characterisation of the payload 9.1.3 The relationship between the radio‐frequency characteristics 9.2 Transparent Repeater 9.2.1 Characterisation of nonlinearities 9.2.2 Repeater organisation 9.2.3 Equipment characteristics 9.3 Regenerative Repeater 9.3.1 Coherent demodulation 9.3.2 Differential demodulation 9.3.3 Multicarrier demodulation 9.4 Multibeam Antenna Payload 9.4.1 Fixed interconnection 9.4.2 Reconfigurable (semi‐fixed) interconnection 9.4.3 Transparent on‐board time domain switching 9.4.4 On‐board frequency domain transparent switching 9.4.5 Baseband regenerative switching 9.4.6 Optical switching 9.5 Introduction to Flexible Payloads 9.6 Solid State Equipment Technology 9.6.1 The environment 9.6.2 Analogue microwave component technology 9.6.3 Digital component technology 9.7 Antenna Coverage 9.7.1 Service zone contour 9.7.2 Geometrical contour 9.7.3 Global coverage 9.7.4 Reduced or spot coverage 9.7.5 Evaluation of antenna pointing error 9.7.6 Conclusion 9.8 Antenna Characteristics 9.8.1 Antenna functions 9.8.2 The RF coverage 9.8.3 Circular beams 9.8.4 Elliptical beams 9.8.5 The influence of depointing 9.8.6 Shaped beams 9.8.7 Multiple beams 9.8.8 Types of antenna 9.8.9 Antenna technologies 9.9 Conclusion References Chapter 10 The Platform 10.1 Subsystems 10.2 Attitude Control 10.2.1 Attitude control functions 10.2.2 Attitude sensors 10.2.3 Attitude determination 10.2.4 Actuators 10.2.5 The principle of gyroscopic stabilisation 10.2.6 Spin stabilisation 10.2.7 Three‐axis stabilisation 10.3 The Propulsion Subsystem 10.3.1 Characteristics of thrusters 10.3.2 Chemical propulsion 10.3.3 Electric propulsion 10.3.4 Organisation of the propulsion subsystem 10.3.5 Electric propulsion for station‐keeping and orbit transfer 10.4 The Electric Power Supply 10.4.1 Primary energy sources 10.4.2 Secondary energy sources 10.4.3 Conditioning and protection circuits 10.4.4 Example calculations 10.5 Telemetry, Tracking, and Command (TTC) and On‐Board Data Handling (OBDH) 10.5.1 Frequencies used 10.5.2 The telecommand links 10.5.3 Telemetry links 10.5.4 Telecommand (TC) and telemetry (TM) message format standards 10.5.5 On‐board data handling (OBDH) 10.5.6 Tracking 10.6 Thermal Control and Structure 10.6.1 Thermal control specifications 10.6.2 Passive control 10.6.3 Active control 10.6.4 Structure 10.6.5 Conclusion 10.7 Developments and Trends References Chapter 11 Satellite Installation and Launch Vehicles 11.1 Installation in Orbit 11.1.1 Basic principles 11.1.2 Calculation of the required velocity increments 11.1.3 Inclination correction and circularisation 11.1.4 The apogee (or perigee) motor 11.1.5 Injection into orbit with a conventional launcher 11.1.6 Injection into orbit from a quasi‐circular low altitude orbit 11.1.7 Operations during installation (station acquisition) 11.1.8 Injection into orbits other than geostationary (non‐GEO orbits) 11.1.9 The launch window 11.2 Launch Vehicles 11.2.1 Brazil 11.2.2 China 11.2.3 Commonwealth of Independent States (CIS) 11.2.4 Europe 11.2.5 India 11.2.6 Israel 11.2.7 Japan 11.2.8 South Korea 11.2.9 United States of America 11.2.10 Reusable launch vehicles 11.2.11 Cost of installation in orbit References Chapter 12 The Space Environment 12.1 Vacuum 12.1.1 Characterisation 12.1.2 Effects 12.2 The Mechanical Environment 12.2.1 The gravitational field 12.2.2 The earth\'s magnetic field 12.2.3 Solar radiation pressure 12.2.4 Meteorites and material particles 12.2.5 Torques of internal origin 12.2.6 The effect of communication transmissions 12.2.7 Conclusions 12.3 Radiation 12.3.1 Solar radiation 12.3.2 Earth radiation 12.3.3 Thermal effects 12.3.4 Effects on materials 12.4 Flux of High‐Energy Particles 12.4.1 Cosmic particles 12.4.2 Effects on materials 12.5 The Environment During Installation 12.5.1 The environment during launching 12.5.2 Environment in the transfer orbit References Chapter 13 Reliability and Availability of Satellite Communications Systems 13.1 Introduction to Reliability 13.1.1 Failure rate 13.1.2 The probability of survival, or reliability 13.1.3 Failure probability or unreliability 13.1.4 Mean time to failure (MTTF) 13.1.5 Mean satellite lifetime 13.1.6 Reliability during the wear‐out period 13.2 Satellite System Availability 13.2.1 No backup satellite in orbit 13.2.2 Backup satellite in orbit 13.2.3 Conclusion 13.3 Subsystem Reliability 13.3.1 Elements in series 13.3.2 Elements in parallel (static redundancy) 13.3.3 Dynamic redundancy (with switching) 13.3.4 Equipment having several failure modes 13.4 Component Reliability 13.4.1 Component reliability 13.4.2 Component selection 13.4.3 Manufacture 13.4.4 Quality assurance References Index EULA