ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sandy Beach Morphodynamics: Form and Process

دانلود کتاب مورفودینامیک ساحل شنی: فرم و فرآیند

Sandy Beach Morphodynamics: Form and Process

مشخصات کتاب

Sandy Beach Morphodynamics: Form and Process

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0081029276, 9780081029275 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 786 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 75 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Sandy Beach Morphodynamics: Form and Process به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مورفودینامیک ساحل شنی: فرم و فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مورفودینامیک ساحل شنی: فرم و فرآیند



سواحل شنی نشان‌دهنده برخی از پویاترین محیط‌های روی زمین هستند و بررسی رفتار مورفودینامیک آنها در مقیاس‌های زمانی و مکانی متفاوت، با تکیه بر رویکردها و تکنیک‌های چند رشته‌ای چالش برانگیز است. مورفودینامیک ساحل شنیآخرین تحقیقات در مورد سیستم های ساحلی و مورفودینامیک آنها و روش های مطالعه آنها را در 29 فصل گرد هم می آورد که طیف کامل مورفودینامیک ساحل را بررسی می کند. فصل‌ها توسط متخصصان برجسته در این زمینه نوشته شده‌اند و درک سطح مقدماتی از فرآیندهای فیزیکی و شکل‌های زمین حاصل را همراه با بحث‌های پیشرفته‌تر ارائه می‌دهند.


توضیحاتی درمورد کتاب به خارجی

Sandy beaches represent some of the most dynamic environments on Earth and examining their morphodynamic behaviour over different temporal and spatial scales is challenging, relying on multidisciplinary approaches and techniques. Sandy Beach Morphodynamics brings together the latest research on beach systems and their morphodynamics and the ways in which they are studied in 29 chapters that review the full spectrum of beach morphodynamics. The chapters are written by leading experts in the field and provide introductory level understanding of physical processes and resulting landforms, along with more advanced discussions.



فهرست مطالب

1 - Introduction to beach morphodynamics
	Chapter outline
	1.1 - Introduction
		1.1.1 - Chapter content
		1.1.2 - Emerging developments in the study of sandy beaches
	References
2 - Beach sand and its origins
	Chapter outline
	2.1 - Introduction
	2.2 - Brief history of provenance studies
	2.3 - Sources of beach sand
		2.3.1 - Fluvial sand supply
		2.3.2 - Production of sand by coastal erosion
		2.3.3 - Production of sand by seabed erosion
		2.3.4 - Biological production of carbonate sands
		2.3.5 - Artificial and nourished beaches
	2.4 - Methodological aspects
		2.4.1 - Sampling strategies and grain-size analysis
		2.4.2 - Hydraulics of beach sand
		2.4.3 - Grain size and beach slope relations
	2.5 - Conclusions and recommendations
	References
3 - Wave climates: deep water to shoaling zone
	Chapter outline
	3.1 - Introduction
	3.2 - Description of a sea state
	3.3 - Databases
		3.3.1 - Stereo-photography
		3.3.2 - Imaging radars
		3.3.3 - Laser altimetry
		3.3.4 - Radar altimetry
	3.4 - Long-term distribution of sea state parameters
	3.5 - Extreme value distribution of sea state parameters
	3.6 - Non-stationary wave climate
	3.7 - Wave atlas
	3.8 - Summary
	References
4 - Wave behaviour outside the surf zone
	Chapter outline
	4.1 - General introduction
	4.2 - Wave theories
		4.2.1 - Deep- and shallow-water linear waves
		4.2.2 - Dispersion relation, group speed and phase speed
		4.2.3 - Non-linear waves: Stokes, cnoidal and solitary wave theories
		4.2.4 - Concept of wave rays
	4.3 - Wave shoaling, refraction and diffraction
		4.3.1 - Wave shoaling
		4.3.2 - Wave refraction
		4.3.3 - Wave diffraction
		4.3.4 - Measurement and analysis of waves
			4.3.4.1 - Measurement
			4.3.4.2 - Analysis
	4.4 - Wave dissipation
		4.4.1 - In deep water (white-capping)
			4.4.1.1 - Theory and observations
			4.4.1.2 - Measurement techniques
		4.4.2 - Bottom friction
			4.4.2.1 - Theory
			4.4.2.2 - Measurement and analysis
	4.5 - Conclusions
	References
5 - Tidal modulation
	Chapter outline
	5.1 - Introduction
	5.2 - Tidal processes
		5.2.1 - Tidal range and impact on the inshore/breaker wave modulation
		5.2.2 - Tidal currents and their impact on inshore circulation
	5.3 - Beach morphodynamics
		5.3.1 - Effect of tides on beach morphology
		5.3.2 - Morphodynamic models of macrotidal beaches and the role of tidal modulation on the beach state
		5.3.3 - Tidal modulation of the RTR and beach type/states
	5.4 - Conclusions
	References
6 - Breaking waves
	Chapter outline
	6.1 - Introduction
	6.2 - Depth-induced wave breaking in the nearshore
		6.2.1 - The break-point location
		6.2.2 - Wave breaker types
		6.2.3 - Predicting wave breaking
	6.3 - Wave breaking in the surf zone
		6.3.1 - Measuring waves
		6.3.2 - Wave height decay
		6.3.3 - Individual wave behaviour
		6.3.4 - Breaker types
		6.3.5 - Wave speeds
		6.3.6 - Wave height distributions of broken waves
		6.3.7 - The fraction of broken waves
	6.4 - Modelling wave energy dissipation in the surf zone
		6.4.1 - Parametric wave energy dissipation models
		6.4.2 - Intermediate and shallow water models
	6.5 - Conclusions
	References
7 - The surf zone
	Chapter outline
	7.1 - What is the surf zone?
	7.2 - Radiation stress and wave set-up
		7.2.1 - Radiation stress
		7.2.2 - Applications of radiation stress: Wave set-up and set-down
	7.3 - Infragravity waves
		7.3.1 - What is an infragravity wave?
		7.3.2 - Wave reflection
		7.3.3 - Types of infragravity waves
			7.3.3.1 - Bound infragravity waves
			7.3.3.2 - Breakpoint-generated infragravity waves
			7.3.3.3 - Edge waves
	7.4 - Surf zone currents
		7.4.1 - Bed return flow
			7.4.1.1 - What goes in, must go out
			7.4.1.2 - Stress imbalances drive bed return flow
			7.4.1.3 - Sediment transport by bed return flow
		7.4.2 - Rip currents
		7.4.3 - Longshore currents
			7.4.3.1 - Longshore-directed radiation stress drives longshore currents
			7.4.3.2 - Predicting longshore currents on planar beaches
			7.4.3.3 - Longshore currents on barred beaches
			7.4.3.4 - Shear waves and tides modulate longshore currents
			7.4.3.5 - Shear waves and sediment transport
	7.5 - Summary
	References
8 - The swash zone
	Chapter outline
	8.1 - Introduction: definition of terms and chapter overview
	8.2 - Swash zone morphology
		8.2.1 - Beach face slope
		8.2.2 - Beach berms
		8.2.3 - Beach steps
		8.2.4 - Beach scarps
		8.2.5 - Sediment sorting in the swash zone
	8.3 - Shoreline kinematics and swash zone morphodynamics
		8.3.1 - Shoreline oscillations driven by standing waves and bores
		8.3.2 - Evolving swash spectral signatures under variable incident waves: swash and the beach-state model
	8.4 - Fluid dynamics, sediment transport and the swash zone profile
		8.4.1 - Swash motion
		8.4.2 - Influence of beach slope, wave frequency and wave amplitude
		8.4.3 - Kinematics
		8.4.4 - Models for bed shear stress, boundary layer and sediment transport
		8.4.5 - Equilibrium beach profile gradient in the swash zone
	8.5 - Swash as a component of coastal inundation
		8.5.1 - Wave run-up
		8.5.2 - Swash overtopping
	8.6 - Concluding remarks
	References
9 - Marine sediment transport
	Chapter outline
	9.1 - Introduction
		9.1.1 - Timescales of sediment transport
	9.2 - Sediment properties
		9.2.1 - Initiation of motion
		9.2.2 - Sediment fall velocity
	9.3 - Modes of sediment transport
		9.3.1 - Suspended load and the advection diffusion approach
		9.3.2 - Bedload transport
			9.3.2.1 - Shear approach to total bedload
			9.3.2.2 - Energetics approach to bedload (Bagnold, Bailard, Bowen line of models)
	9.4 - Alongshore and cross-shore sediment transport
		9.4.1 - Alongshore sediment transport
			9.4.1.1 - Estimating wave-driven alongshore sediment transport
		9.4.2 - Cross-shore sediment transport
			9.4.2.1 - Mechanisms of cross-shore sediment transport
	9.5 - The present state and future challenges in sediment transport modelling
	9.6 - Measuring the magnitude of sediment transport along sandy beaches
	9.7 - Conclusions and outlook
	References
10 - Aeolian (windblown) sand transport over beaches
	Chapter outline
	10.1 - Introduction
	10.2 - Fundamentals of aeolian sand transport
	10.3 - Aeolian sand transport models
	10.4 - Controls on aeolian sand transport on beaches
		10.4.1 - Regional wind climate and geomorphically effective sand transport events
		10.4.2 - Beach width and the ‘fetch effect’
		10.4.3 - Surface moisture interactions
		10.4.4 - Salt and biological crusts
		10.4.5 - Surface roughness elements and vegetation
		10.4.6 - Slope and topographic effects
	10.5 - Summary and conclusions
	References
11 - Rip currents
	Chapter outline
	11.1 - Introduction
	11.2 - Rip circulation
	11.3 - Rip types
		11.3.1 - Hydrodynamically controlled rip currents
		11.3.2 - Bathymetrically controlled rip currents
		11.3.3 - Boundary-controlled rip currents
		11.3.4 - Embayed-cellular rips and mega-rips
	11.4 - Spacing and morphology of channel rips
	11.5 - Sediment transport in channel rips
	11.6 - Morphodynamic evolution of rip systems
		11.6.1 - Straight open coasts
		11.6.2 - Embayed beaches
	11.7 - Role of rips in nearshore, beach and dune interaction
	11.8 - Rip forecasting and monitoring
	11.9 - Summary
	References
12 - From cusps to capes: self-organised shoreline shapes
	Chapter outline
	12.1 - Introduction
	12.2 - Beach cusps
	12.3 - Alongshore sandwaves
	12.4 - Cuspate capes
	12.5 - Discussion
	References
13 - Rhythmic patterns in the surfzone
	Chapter outline
	13.1 - Introduction
	13.2 - Patterns
		13.2.1 - Shore-parallel sandbars
		13.2.2 - Multiple sandbars
		13.2.3 - Crescentic sandbars
			13.2.3.1 - Observations of crescentic sandbar patterns and behaviours
			13.2.3.2 - Physical mechanisms and modelling of crescentic sandbars
		13.2.4 - Transverse sandbars
	13.3 - Summary and perspectives
	References
14 - Mixed sand and gravel beaches
	Chapter outline
	14.1 - Introduction
		14.1.1 - Location and main characteristics
		14.1.2 - Brief historical review
		14.1.3 - The role of geological factors
		14.1.4 - Objectives and scope
	14.2 - Characteristics of MSGB
		14.2.1 - Steps
		14.2.2 - Berms
		14.2.3 - Cusps
	14.3 - Hydrodynamics of MSGB under short and long waves
		14.3.1 - Swash: wave run-up and set-up
		14.3.2 - Overtopping and overwashing
		14.3.3 - The role of wave reflection
		14.3.4 - Groundwater flows: infiltration and exfiltration
	14.4 - Morphodynamics of MSGB: sediment erosion and accumulation under multiple spatial and temporal scales
		14.4.1 - Longshore sediment transport on MSGB
		14.4.2 - Cross-shore sediment transport at MSGB
		14.4.3 - Morphodynamics of storms and natural recovery: evidence from MSGB on the Alborán Sea
	14.5 - Discussion and conclusions
		14.5.1 - Morphodynamic differences between sandy beaches and MSGB
		14.5.2 - Summary and open research questions
	References
15 - Sandy beaches in estuaries and bays
	Chapter outline
	15.1 - Definition of bay and estuary beaches (BEBs)
	15.2 - Geological context
	15.3 - Oceanographic context
		15.3.1 - Ocean waves
		15.3.2 - Infragravity waves
		15.3.3 - Locally generated waves
		15.3.4 - Tidal and fluvial currents
	15.4 - Other terms used for BEBs
	15.5 - The morphodynamics of sandy beaches in estuaries and bays
		15.5.1 - Review
		15.5.2 - Summary of BEB morphodynamic characteristics
	15.6 - A case study from Botany Bay, SE Australia
	15.7 - Emerging concepts and concluding remarks
	Acknowledgements
	References
16 - Wave-dominated, tide-modified and tide-dominated continuum
	Chapter outline
	16.1 - Introduction
	16.2 - Beach classifications
	16.3 - Beach types and states
		16.3.1 - Wave-dominated beaches
		16.3.2 - Embayed beaches
		16.3.3 - Gravel beaches
		16.3.4 - Tide-modified beaches
		16.3.5 - Tide-dominated beaches
		16.3.6 - Beaches fronted by rock flats and reef flats
	16.4 - Global and regional controls on beach morphodynamics
	16.5 - Conclusion
	References
17 - Shallow water wave modelling in the nearshore (SWAN)
	Chapter outline
	17.1 - The need for wave models
		17.1.1 - Classification of wave models
		17.1.2 - The new era of morphodynamic wave models
	17.2 - Spectral wave models: WAM, WWIII and SWAN
		17.2.1 - The use of spectral wave models: from global to local hindcast
	17.3 - The SWAN wave model for nearshore environments
		17.3.1 - Action balance equation and propagation terms
		17.3.2 - Physical processes included in SWAN: source terms
			17.3.2.1 - Wind input term
			17.3.2.2 - Non-linear interactions: triads and quadruplets
			17.3.2.3 - Dissipation
			17.3.2.4 - Refraction and diffraction
			17.3.2.5 - Other processes
	17.4 - Running a SWAN nearshore wave simulation
		17.4.1 - Spatial input grids
			17.4.1.1 - Bathymetry
			17.4.1.2 - Wind field, water levels and bottom friction
		17.4.2 - Computational grid and boundary conditions
			17.4.2.1 - Boundary conditions
		17.4.3 - Outputs grids
		17.4.4 - Calibration and validation
	17.5 - Summary
	References
18 - Reflective–dissipative continuum
	Chapter outline
	18.1 - Introduction
	18.2 - Antecedents to beach morphological and temporal behaviour
		18.2.1 - Two-dimensional and three-dimensional beach change approaches
		18.2.2 - The Australian wave-dominated Beach Model (ABM) and other beach morphological parameterisations
		18.2.3 - Methods and techniques for monitoring-determining beach state and morphology
	18.3 - The reflective–dissipative continuum
		18.3.1 - Waves and sediment characteristics related to beach classification
		18.3.2 - Dissipative beaches
		18.3.3 - Intermediate beaches
		18.3.4 - Reflective beaches
	18.4 - The beach state and/or modal state classification in time and space
		18.4.1 - Sequential changes in beach state
		18.4.2 - The beach accretion cycle and related morphological configuration
		18.4.3 - The beach erosion cycle and the related morphological configuration
		18.4.4 - Beach cycle drivers and the antecedent topography
	18.5 - Conclusions
	References
19 - Shoreline change analysis
	Chapter outline
	19.1 - Introduction
	19.2 - Generation of a shoreline database
		19.2.1 - The shoreline
		19.2.2 - Shorelines on historical mapping
		19.2.3 - Shoreline indicators
		19.2.4 - Shorelines from satellite imagery
		19.2.5 - Alternative considerations
	19.3 - Analytical approach
		19.3.1 - Geospatial analysis
		19.3.2 - Shoreline change calculations
		19.3.3 - Quantification of error and uncertainty
		19.3.4 - Multivariate approaches
	19.4 - Summary
	References
20 - Seasonal imprint on beach morphodynamics
	Chapter outline
	20.1 - Introduction
	20.2 - Seasonality: definition and genesis
	20.3 - Morphological proxies to assess seasonality
		20.3.1 - Beach erosion
		20.3.2 - Beach accretion
		20.3.3 - Modelling beach behaviour
	20.4 - Seasonal beach imprints
		20.4.1 - Imprints on morphology
		20.4.2 - Imprints on hydro-sedimentary and aeolian processes
	20.5 - Conclusions
	References
21 - Long-term shoreline morphodynamics: processes and preservation of environmental signals
	Chapter outline
	21.1 - Progradational coastal systems
	21.2 - Development of regressive records of paleo-environmental change
		21.2.1 - Formation of beach and foredune ridges and ridge sets
		21.2.2 - Growth of beach- and foredune-ridge plains and preservation of paleo-environmental signals
		21.2.3 - Controls on shoreline orientation and growth
		21.2.4 - Autogenic and allogenic signals
	21.3 - The coastal record of paleo-environmental change: global examples
		21.3.1 - Sea-level change
		21.3.2 - Sediment fluxes
		21.3.3 - Wind and wave climate
		21.3.4 - Events
		21.3.5 - Secular changes
	21.4 - Challenges and recent advances in using the long-term shoreline-change record
		21.4.1 - Limitations of the progradational coastal archive
		21.4.2 - Recommendations for producing paleo-environmental archives from records of long-term shoreline change
		21.4.3 - Integrating quantitative and process-based understanding of coastal morphodynamics
	21.5 - Future outlook for records of long-term shoreline morphodynamics
	References
22 - Extreme events: impact and recovery
	Chapter outline
	22.1 - Introduction
	22.2 - Definitions
		22.2.1 - Extreme events
		22.2.2 - Beach and dune erosion
		22.2.3 - Recovery
	22.3 - Characterisation of storm impact and recovery
		22.3.1 - Storm impacts
			22.3.1.1 - Storm impact regimes
			22.3.1.2 - Localised three-dimensional impacts
		22.3.2 - Beach and dune recovery
	22.4 - Example observations from Europe and Australia
		22.4.1 - Impact and recovery from the 2013–14 winter along the Atlantic coast of Europe
		22.4.2 - Impact and recovery from the 2016 east coast low in SE Australia
	22.5 - Future perspectives and knowledge gaps
	References
23 - Headland bypassing and overpassing: form, processes and applications
	Chapter outline
	23.1 - Definitions and literature review
	23.2 - Major controls and driving forces
		23.2.1 - Geomorphological constraints
		23.2.2 - Sediment characteristics and availability
		23.2.3 - Physical forcing
			23.2.3.1 - Beach connectivity, bypassing index and headland bypassing rate equation
	23.3 - Classification and conceptual models
		23.3.1 - Headland overpassing
		23.3.2 - Headland bypassing swash-surf zone
		23.3.3 - Headland bypassing surfzone-nearshore
		23.3.4 - Headland bypassing cross embayment
	23.4 - Investigating HB&O
		23.4.1 - Visual observation
		23.4.2 - Remote-sensing
		23.4.3 - Sediment-based methods
			23.4.3.1 - Surface sediment samples and cores
			23.4.3.2 - Sediment trapping
			23.4.3.3 - Sediment tracing
		23.4.4 - Morphological measurements
			23.4.4.1 - Sub-bottom and GPR profilers
		23.4.5 - Instrumentation
		23.4.6 - Numerical modelling
		23.4.7 - Advantages and disadvantages of methods
	23.5 - HB&O and building with nature concept
	23.6 - Summary
	Further Reading
	References
24 - 
Mechanisms and timescales of beach rotation
	Chapter outline
	24.1 - Introduction
	24.2 - Drivers and mechanisms of beach rotation
		24.2.1 - Longshore coherent response
		24.2.2 - Combined cross-shore and longshore response
		24.2.3 - Nearshore morphological dynamics
	24.3 - Timescales of beach rotation
		24.3.1 - Short-term
		24.3.2 - Medium-term
		24.3.3 - Long-term
	24.4 - Beach rotation in the context of global change and human action
		24.4.1 - Sea-level rise
		24.4.2 - Wave climate
		24.4.3 - Coastal modification
	24.5 - Summary
	Further Readings
	References
25 - Coastal sediment compartments, wave climate and centennial-scale sediment budget
	Chapter outline
	25.1 - Introduction
	25.2 - Coastal morphology, sediment transport paths and compartmentalisation
	25.3 - Wave climate and the sediment valve concept
	25.4 - Sediment budget determination
	25.5 - Case study on centennial scale sediment budget analysis
		25.5.1 - Historical bathymetric surveys and shoreline maps
		25.5.2 - Geohistorical morpho-sedimentary archive
		25.5.3 - Data-model evaluation of sand transport
	25.6 - Outstanding research problems on defining coastal stability and projecting future coasts
	Acknowledgements
	References
26 - Global beach database
	Chapter outline
	26.1 - Introduction
	26.2 - Remote sensing techniques and validation
		26.2.1 - Sandy beach detection
		26.2.2 - Shoreline detection methods
		26.2.3 - Accuracy and limitations
			26.2.3.1 - Accuracy
			26.2.3.2 - Limitations
	26.3 - Global beach database
		26.3.1 - Global occurrence of sandy beaches
		26.3.2 - Global sandy beach dynamics
	26.4 - Hotspots of retreating and prograding beaches
	26.5 - Quantifying local scale changes
	26.6 - Outlook
	References
27 - Beach and nearshore monitoring techniques
	Chapter outline
	27.1 - Introduction
	27.2 - Monitoring design
		27.2.1 - Why monitoring?
		27.2.2 - Monitoring design
			27.2.2.1 - Monitoring design principles
			27.2.2.2 - Spatial and temporal scales
			27.2.2.3 - Spatial and temporal resolutions
			27.2.2.4 - Budget
		27.2.3 - Coastal measurements in context: multidisciplinary monitoring
		27.2.4 - Common pitfalls and how to avoid them
	27.3 - Monitoring equipment and parameters
		27.3.1 - In situ
			1 - Global Navigation Satellite System (GNSS)
			2 - Wave buoy
			3 - Pressure transducer
			4 - Drifters/drogues
			5 - Optical backscatter sensor (OBS)
			Acoustic instruments
			6,7 - Single-beam echosounder/underwater altimeter
			8 - Multibeam echosounder
			9 - Acoustic Doppler velocimeter (ADV)
			10 - Acoustic Doppler current profiler (ADCP)
			11 - Acoustic backscatter sensor (ABS)
		27.3.2 - Remote sensing
			12 - Laser scanning
			13 - Photography
			14 - Video monitoring
			15 - Radar
		27.3.3 - Samplers
			16 - Water sampler
			Sediment traps
			17 - Underwater
			18 - Above water
			19 - Grab
			20 - Core
		27.3.4 - Particle size analysis
			27.3.4.1 - Calipers
			27.3.4.2 - Sieve
			27.3.4.3 - Laser granulometer
	27.4 - Data management
		27.4.1 - Role of data management
		27.4.2 - Good data
		27.4.3 - Data management plan
		27.4.4 - Data management system
		27.4.5 - Sharing data
		27.4.6 - Publishing data
	27.5 - Future perspective
	Acknowledgements
	References
28 - Machine learning and coastal processes
	Chapter outline
	28.1 - Introduction
		28.1.1 - What is ‘machine learning’?
		28.1.2 - Differences between machine learning and other modelling approaches
	28.2 - Machine learning for modelling coastal processes
		28.2.1 - k-nearest neighbours
		28.2.2 - Decision trees and random forests
		28.2.3 - Bayesian networks
		28.2.4 - Neural networks
		28.2.5 - Support vector machines
		28.2.6 - Other machine learning algorithms
	28.3 - Machine learning guidelines
		28.3.1 - Typical machine learning workflow and semantics
		28.3.2 - Tools for machine learning
		28.3.3 - Preparing data, feature engineering and feature selection
		28.3.4 - Model selection
		28.3.5 - Model evaluation
		28.3.6 - Example application
	28.4 - The future of machine learning in coastal processes
	References
29 - Future challenges in beach management as contested spaces
	Chapter outline
	29.1 - Introduction
	29.2 - Beach dynamics and coastal management
	29.3 - Shoreline boundary shifts
	29.4 - Managing the challenges of landward translation of beaches
	29.5 - Beach management in the future—some examples
	29.6 - Conclusion
	Acknowledgements
	References




نظرات کاربران