دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Derek Jackson (editor). Andrew Short (editor)
سری:
ISBN (شابک) : 0081029276, 9780081029275
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 786
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 75 مگابایت
در صورت تبدیل فایل کتاب Sandy Beach Morphodynamics: Form and Process به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مورفودینامیک ساحل شنی: فرم و فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سواحل شنی نشاندهنده برخی از پویاترین محیطهای روی زمین هستند و بررسی رفتار مورفودینامیک آنها در مقیاسهای زمانی و مکانی متفاوت، با تکیه بر رویکردها و تکنیکهای چند رشتهای چالش برانگیز است. مورفودینامیک ساحل شنیآخرین تحقیقات در مورد سیستم های ساحلی و مورفودینامیک آنها و روش های مطالعه آنها را در 29 فصل گرد هم می آورد که طیف کامل مورفودینامیک ساحل را بررسی می کند. فصلها توسط متخصصان برجسته در این زمینه نوشته شدهاند و درک سطح مقدماتی از فرآیندهای فیزیکی و شکلهای زمین حاصل را همراه با بحثهای پیشرفتهتر ارائه میدهند.
Sandy beaches represent some of the most dynamic environments on Earth and examining their morphodynamic behaviour over different temporal and spatial scales is challenging, relying on multidisciplinary approaches and techniques. Sandy Beach Morphodynamics brings together the latest research on beach systems and their morphodynamics and the ways in which they are studied in 29 chapters that review the full spectrum of beach morphodynamics. The chapters are written by leading experts in the field and provide introductory level understanding of physical processes and resulting landforms, along with more advanced discussions.
1 - Introduction to beach morphodynamics Chapter outline 1.1 - Introduction 1.1.1 - Chapter content 1.1.2 - Emerging developments in the study of sandy beaches References 2 - Beach sand and its origins Chapter outline 2.1 - Introduction 2.2 - Brief history of provenance studies 2.3 - Sources of beach sand 2.3.1 - Fluvial sand supply 2.3.2 - Production of sand by coastal erosion 2.3.3 - Production of sand by seabed erosion 2.3.4 - Biological production of carbonate sands 2.3.5 - Artificial and nourished beaches 2.4 - Methodological aspects 2.4.1 - Sampling strategies and grain-size analysis 2.4.2 - Hydraulics of beach sand 2.4.3 - Grain size and beach slope relations 2.5 - Conclusions and recommendations References 3 - Wave climates: deep water to shoaling zone Chapter outline 3.1 - Introduction 3.2 - Description of a sea state 3.3 - Databases 3.3.1 - Stereo-photography 3.3.2 - Imaging radars 3.3.3 - Laser altimetry 3.3.4 - Radar altimetry 3.4 - Long-term distribution of sea state parameters 3.5 - Extreme value distribution of sea state parameters 3.6 - Non-stationary wave climate 3.7 - Wave atlas 3.8 - Summary References 4 - Wave behaviour outside the surf zone Chapter outline 4.1 - General introduction 4.2 - Wave theories 4.2.1 - Deep- and shallow-water linear waves 4.2.2 - Dispersion relation, group speed and phase speed 4.2.3 - Non-linear waves: Stokes, cnoidal and solitary wave theories 4.2.4 - Concept of wave rays 4.3 - Wave shoaling, refraction and diffraction 4.3.1 - Wave shoaling 4.3.2 - Wave refraction 4.3.3 - Wave diffraction 4.3.4 - Measurement and analysis of waves 4.3.4.1 - Measurement 4.3.4.2 - Analysis 4.4 - Wave dissipation 4.4.1 - In deep water (white-capping) 4.4.1.1 - Theory and observations 4.4.1.2 - Measurement techniques 4.4.2 - Bottom friction 4.4.2.1 - Theory 4.4.2.2 - Measurement and analysis 4.5 - Conclusions References 5 - Tidal modulation Chapter outline 5.1 - Introduction 5.2 - Tidal processes 5.2.1 - Tidal range and impact on the inshore/breaker wave modulation 5.2.2 - Tidal currents and their impact on inshore circulation 5.3 - Beach morphodynamics 5.3.1 - Effect of tides on beach morphology 5.3.2 - Morphodynamic models of macrotidal beaches and the role of tidal modulation on the beach state 5.3.3 - Tidal modulation of the RTR and beach type/states 5.4 - Conclusions References 6 - Breaking waves Chapter outline 6.1 - Introduction 6.2 - Depth-induced wave breaking in the nearshore 6.2.1 - The break-point location 6.2.2 - Wave breaker types 6.2.3 - Predicting wave breaking 6.3 - Wave breaking in the surf zone 6.3.1 - Measuring waves 6.3.2 - Wave height decay 6.3.3 - Individual wave behaviour 6.3.4 - Breaker types 6.3.5 - Wave speeds 6.3.6 - Wave height distributions of broken waves 6.3.7 - The fraction of broken waves 6.4 - Modelling wave energy dissipation in the surf zone 6.4.1 - Parametric wave energy dissipation models 6.4.2 - Intermediate and shallow water models 6.5 - Conclusions References 7 - The surf zone Chapter outline 7.1 - What is the surf zone? 7.2 - Radiation stress and wave set-up 7.2.1 - Radiation stress 7.2.2 - Applications of radiation stress: Wave set-up and set-down 7.3 - Infragravity waves 7.3.1 - What is an infragravity wave? 7.3.2 - Wave reflection 7.3.3 - Types of infragravity waves 7.3.3.1 - Bound infragravity waves 7.3.3.2 - Breakpoint-generated infragravity waves 7.3.3.3 - Edge waves 7.4 - Surf zone currents 7.4.1 - Bed return flow 7.4.1.1 - What goes in, must go out 7.4.1.2 - Stress imbalances drive bed return flow 7.4.1.3 - Sediment transport by bed return flow 7.4.2 - Rip currents 7.4.3 - Longshore currents 7.4.3.1 - Longshore-directed radiation stress drives longshore currents 7.4.3.2 - Predicting longshore currents on planar beaches 7.4.3.3 - Longshore currents on barred beaches 7.4.3.4 - Shear waves and tides modulate longshore currents 7.4.3.5 - Shear waves and sediment transport 7.5 - Summary References 8 - The swash zone Chapter outline 8.1 - Introduction: definition of terms and chapter overview 8.2 - Swash zone morphology 8.2.1 - Beach face slope 8.2.2 - Beach berms 8.2.3 - Beach steps 8.2.4 - Beach scarps 8.2.5 - Sediment sorting in the swash zone 8.3 - Shoreline kinematics and swash zone morphodynamics 8.3.1 - Shoreline oscillations driven by standing waves and bores 8.3.2 - Evolving swash spectral signatures under variable incident waves: swash and the beach-state model 8.4 - Fluid dynamics, sediment transport and the swash zone profile 8.4.1 - Swash motion 8.4.2 - Influence of beach slope, wave frequency and wave amplitude 8.4.3 - Kinematics 8.4.4 - Models for bed shear stress, boundary layer and sediment transport 8.4.5 - Equilibrium beach profile gradient in the swash zone 8.5 - Swash as a component of coastal inundation 8.5.1 - Wave run-up 8.5.2 - Swash overtopping 8.6 - Concluding remarks References 9 - Marine sediment transport Chapter outline 9.1 - Introduction 9.1.1 - Timescales of sediment transport 9.2 - Sediment properties 9.2.1 - Initiation of motion 9.2.2 - Sediment fall velocity 9.3 - Modes of sediment transport 9.3.1 - Suspended load and the advection diffusion approach 9.3.2 - Bedload transport 9.3.2.1 - Shear approach to total bedload 9.3.2.2 - Energetics approach to bedload (Bagnold, Bailard, Bowen line of models) 9.4 - Alongshore and cross-shore sediment transport 9.4.1 - Alongshore sediment transport 9.4.1.1 - Estimating wave-driven alongshore sediment transport 9.4.2 - Cross-shore sediment transport 9.4.2.1 - Mechanisms of cross-shore sediment transport 9.5 - The present state and future challenges in sediment transport modelling 9.6 - Measuring the magnitude of sediment transport along sandy beaches 9.7 - Conclusions and outlook References 10 - Aeolian (windblown) sand transport over beaches Chapter outline 10.1 - Introduction 10.2 - Fundamentals of aeolian sand transport 10.3 - Aeolian sand transport models 10.4 - Controls on aeolian sand transport on beaches 10.4.1 - Regional wind climate and geomorphically effective sand transport events 10.4.2 - Beach width and the ‘fetch effect’ 10.4.3 - Surface moisture interactions 10.4.4 - Salt and biological crusts 10.4.5 - Surface roughness elements and vegetation 10.4.6 - Slope and topographic effects 10.5 - Summary and conclusions References 11 - Rip currents Chapter outline 11.1 - Introduction 11.2 - Rip circulation 11.3 - Rip types 11.3.1 - Hydrodynamically controlled rip currents 11.3.2 - Bathymetrically controlled rip currents 11.3.3 - Boundary-controlled rip currents 11.3.4 - Embayed-cellular rips and mega-rips 11.4 - Spacing and morphology of channel rips 11.5 - Sediment transport in channel rips 11.6 - Morphodynamic evolution of rip systems 11.6.1 - Straight open coasts 11.6.2 - Embayed beaches 11.7 - Role of rips in nearshore, beach and dune interaction 11.8 - Rip forecasting and monitoring 11.9 - Summary References 12 - From cusps to capes: self-organised shoreline shapes Chapter outline 12.1 - Introduction 12.2 - Beach cusps 12.3 - Alongshore sandwaves 12.4 - Cuspate capes 12.5 - Discussion References 13 - Rhythmic patterns in the surfzone Chapter outline 13.1 - Introduction 13.2 - Patterns 13.2.1 - Shore-parallel sandbars 13.2.2 - Multiple sandbars 13.2.3 - Crescentic sandbars 13.2.3.1 - Observations of crescentic sandbar patterns and behaviours 13.2.3.2 - Physical mechanisms and modelling of crescentic sandbars 13.2.4 - Transverse sandbars 13.3 - Summary and perspectives References 14 - Mixed sand and gravel beaches Chapter outline 14.1 - Introduction 14.1.1 - Location and main characteristics 14.1.2 - Brief historical review 14.1.3 - The role of geological factors 14.1.4 - Objectives and scope 14.2 - Characteristics of MSGB 14.2.1 - Steps 14.2.2 - Berms 14.2.3 - Cusps 14.3 - Hydrodynamics of MSGB under short and long waves 14.3.1 - Swash: wave run-up and set-up 14.3.2 - Overtopping and overwashing 14.3.3 - The role of wave reflection 14.3.4 - Groundwater flows: infiltration and exfiltration 14.4 - Morphodynamics of MSGB: sediment erosion and accumulation under multiple spatial and temporal scales 14.4.1 - Longshore sediment transport on MSGB 14.4.2 - Cross-shore sediment transport at MSGB 14.4.3 - Morphodynamics of storms and natural recovery: evidence from MSGB on the Alborán Sea 14.5 - Discussion and conclusions 14.5.1 - Morphodynamic differences between sandy beaches and MSGB 14.5.2 - Summary and open research questions References 15 - Sandy beaches in estuaries and bays Chapter outline 15.1 - Definition of bay and estuary beaches (BEBs) 15.2 - Geological context 15.3 - Oceanographic context 15.3.1 - Ocean waves 15.3.2 - Infragravity waves 15.3.3 - Locally generated waves 15.3.4 - Tidal and fluvial currents 15.4 - Other terms used for BEBs 15.5 - The morphodynamics of sandy beaches in estuaries and bays 15.5.1 - Review 15.5.2 - Summary of BEB morphodynamic characteristics 15.6 - A case study from Botany Bay, SE Australia 15.7 - Emerging concepts and concluding remarks Acknowledgements References 16 - Wave-dominated, tide-modified and tide-dominated continuum Chapter outline 16.1 - Introduction 16.2 - Beach classifications 16.3 - Beach types and states 16.3.1 - Wave-dominated beaches 16.3.2 - Embayed beaches 16.3.3 - Gravel beaches 16.3.4 - Tide-modified beaches 16.3.5 - Tide-dominated beaches 16.3.6 - Beaches fronted by rock flats and reef flats 16.4 - Global and regional controls on beach morphodynamics 16.5 - Conclusion References 17 - Shallow water wave modelling in the nearshore (SWAN) Chapter outline 17.1 - The need for wave models 17.1.1 - Classification of wave models 17.1.2 - The new era of morphodynamic wave models 17.2 - Spectral wave models: WAM, WWIII and SWAN 17.2.1 - The use of spectral wave models: from global to local hindcast 17.3 - The SWAN wave model for nearshore environments 17.3.1 - Action balance equation and propagation terms 17.3.2 - Physical processes included in SWAN: source terms 17.3.2.1 - Wind input term 17.3.2.2 - Non-linear interactions: triads and quadruplets 17.3.2.3 - Dissipation 17.3.2.4 - Refraction and diffraction 17.3.2.5 - Other processes 17.4 - Running a SWAN nearshore wave simulation 17.4.1 - Spatial input grids 17.4.1.1 - Bathymetry 17.4.1.2 - Wind field, water levels and bottom friction 17.4.2 - Computational grid and boundary conditions 17.4.2.1 - Boundary conditions 17.4.3 - Outputs grids 17.4.4 - Calibration and validation 17.5 - Summary References 18 - Reflective–dissipative continuum Chapter outline 18.1 - Introduction 18.2 - Antecedents to beach morphological and temporal behaviour 18.2.1 - Two-dimensional and three-dimensional beach change approaches 18.2.2 - The Australian wave-dominated Beach Model (ABM) and other beach morphological parameterisations 18.2.3 - Methods and techniques for monitoring-determining beach state and morphology 18.3 - The reflective–dissipative continuum 18.3.1 - Waves and sediment characteristics related to beach classification 18.3.2 - Dissipative beaches 18.3.3 - Intermediate beaches 18.3.4 - Reflective beaches 18.4 - The beach state and/or modal state classification in time and space 18.4.1 - Sequential changes in beach state 18.4.2 - The beach accretion cycle and related morphological configuration 18.4.3 - The beach erosion cycle and the related morphological configuration 18.4.4 - Beach cycle drivers and the antecedent topography 18.5 - Conclusions References 19 - Shoreline change analysis Chapter outline 19.1 - Introduction 19.2 - Generation of a shoreline database 19.2.1 - The shoreline 19.2.2 - Shorelines on historical mapping 19.2.3 - Shoreline indicators 19.2.4 - Shorelines from satellite imagery 19.2.5 - Alternative considerations 19.3 - Analytical approach 19.3.1 - Geospatial analysis 19.3.2 - Shoreline change calculations 19.3.3 - Quantification of error and uncertainty 19.3.4 - Multivariate approaches 19.4 - Summary References 20 - Seasonal imprint on beach morphodynamics Chapter outline 20.1 - Introduction 20.2 - Seasonality: definition and genesis 20.3 - Morphological proxies to assess seasonality 20.3.1 - Beach erosion 20.3.2 - Beach accretion 20.3.3 - Modelling beach behaviour 20.4 - Seasonal beach imprints 20.4.1 - Imprints on morphology 20.4.2 - Imprints on hydro-sedimentary and aeolian processes 20.5 - Conclusions References 21 - Long-term shoreline morphodynamics: processes and preservation of environmental signals Chapter outline 21.1 - Progradational coastal systems 21.2 - Development of regressive records of paleo-environmental change 21.2.1 - Formation of beach and foredune ridges and ridge sets 21.2.2 - Growth of beach- and foredune-ridge plains and preservation of paleo-environmental signals 21.2.3 - Controls on shoreline orientation and growth 21.2.4 - Autogenic and allogenic signals 21.3 - The coastal record of paleo-environmental change: global examples 21.3.1 - Sea-level change 21.3.2 - Sediment fluxes 21.3.3 - Wind and wave climate 21.3.4 - Events 21.3.5 - Secular changes 21.4 - Challenges and recent advances in using the long-term shoreline-change record 21.4.1 - Limitations of the progradational coastal archive 21.4.2 - Recommendations for producing paleo-environmental archives from records of long-term shoreline change 21.4.3 - Integrating quantitative and process-based understanding of coastal morphodynamics 21.5 - Future outlook for records of long-term shoreline morphodynamics References 22 - Extreme events: impact and recovery Chapter outline 22.1 - Introduction 22.2 - Definitions 22.2.1 - Extreme events 22.2.2 - Beach and dune erosion 22.2.3 - Recovery 22.3 - Characterisation of storm impact and recovery 22.3.1 - Storm impacts 22.3.1.1 - Storm impact regimes 22.3.1.2 - Localised three-dimensional impacts 22.3.2 - Beach and dune recovery 22.4 - Example observations from Europe and Australia 22.4.1 - Impact and recovery from the 2013–14 winter along the Atlantic coast of Europe 22.4.2 - Impact and recovery from the 2016 east coast low in SE Australia 22.5 - Future perspectives and knowledge gaps References 23 - Headland bypassing and overpassing: form, processes and applications Chapter outline 23.1 - Definitions and literature review 23.2 - Major controls and driving forces 23.2.1 - Geomorphological constraints 23.2.2 - Sediment characteristics and availability 23.2.3 - Physical forcing 23.2.3.1 - Beach connectivity, bypassing index and headland bypassing rate equation 23.3 - Classification and conceptual models 23.3.1 - Headland overpassing 23.3.2 - Headland bypassing swash-surf zone 23.3.3 - Headland bypassing surfzone-nearshore 23.3.4 - Headland bypassing cross embayment 23.4 - Investigating HB&O 23.4.1 - Visual observation 23.4.2 - Remote-sensing 23.4.3 - Sediment-based methods 23.4.3.1 - Surface sediment samples and cores 23.4.3.2 - Sediment trapping 23.4.3.3 - Sediment tracing 23.4.4 - Morphological measurements 23.4.4.1 - Sub-bottom and GPR profilers 23.4.5 - Instrumentation 23.4.6 - Numerical modelling 23.4.7 - Advantages and disadvantages of methods 23.5 - HB&O and building with nature concept 23.6 - Summary Further Reading References 24 - Mechanisms and timescales of beach rotation Chapter outline 24.1 - Introduction 24.2 - Drivers and mechanisms of beach rotation 24.2.1 - Longshore coherent response 24.2.2 - Combined cross-shore and longshore response 24.2.3 - Nearshore morphological dynamics 24.3 - Timescales of beach rotation 24.3.1 - Short-term 24.3.2 - Medium-term 24.3.3 - Long-term 24.4 - Beach rotation in the context of global change and human action 24.4.1 - Sea-level rise 24.4.2 - Wave climate 24.4.3 - Coastal modification 24.5 - Summary Further Readings References 25 - Coastal sediment compartments, wave climate and centennial-scale sediment budget Chapter outline 25.1 - Introduction 25.2 - Coastal morphology, sediment transport paths and compartmentalisation 25.3 - Wave climate and the sediment valve concept 25.4 - Sediment budget determination 25.5 - Case study on centennial scale sediment budget analysis 25.5.1 - Historical bathymetric surveys and shoreline maps 25.5.2 - Geohistorical morpho-sedimentary archive 25.5.3 - Data-model evaluation of sand transport 25.6 - Outstanding research problems on defining coastal stability and projecting future coasts Acknowledgements References 26 - Global beach database Chapter outline 26.1 - Introduction 26.2 - Remote sensing techniques and validation 26.2.1 - Sandy beach detection 26.2.2 - Shoreline detection methods 26.2.3 - Accuracy and limitations 26.2.3.1 - Accuracy 26.2.3.2 - Limitations 26.3 - Global beach database 26.3.1 - Global occurrence of sandy beaches 26.3.2 - Global sandy beach dynamics 26.4 - Hotspots of retreating and prograding beaches 26.5 - Quantifying local scale changes 26.6 - Outlook References 27 - Beach and nearshore monitoring techniques Chapter outline 27.1 - Introduction 27.2 - Monitoring design 27.2.1 - Why monitoring? 27.2.2 - Monitoring design 27.2.2.1 - Monitoring design principles 27.2.2.2 - Spatial and temporal scales 27.2.2.3 - Spatial and temporal resolutions 27.2.2.4 - Budget 27.2.3 - Coastal measurements in context: multidisciplinary monitoring 27.2.4 - Common pitfalls and how to avoid them 27.3 - Monitoring equipment and parameters 27.3.1 - In situ 1 - Global Navigation Satellite System (GNSS) 2 - Wave buoy 3 - Pressure transducer 4 - Drifters/drogues 5 - Optical backscatter sensor (OBS) Acoustic instruments 6,7 - Single-beam echosounder/underwater altimeter 8 - Multibeam echosounder 9 - Acoustic Doppler velocimeter (ADV) 10 - Acoustic Doppler current profiler (ADCP) 11 - Acoustic backscatter sensor (ABS) 27.3.2 - Remote sensing 12 - Laser scanning 13 - Photography 14 - Video monitoring 15 - Radar 27.3.3 - Samplers 16 - Water sampler Sediment traps 17 - Underwater 18 - Above water 19 - Grab 20 - Core 27.3.4 - Particle size analysis 27.3.4.1 - Calipers 27.3.4.2 - Sieve 27.3.4.3 - Laser granulometer 27.4 - Data management 27.4.1 - Role of data management 27.4.2 - Good data 27.4.3 - Data management plan 27.4.4 - Data management system 27.4.5 - Sharing data 27.4.6 - Publishing data 27.5 - Future perspective Acknowledgements References 28 - Machine learning and coastal processes Chapter outline 28.1 - Introduction 28.1.1 - What is ‘machine learning’? 28.1.2 - Differences between machine learning and other modelling approaches 28.2 - Machine learning for modelling coastal processes 28.2.1 - k-nearest neighbours 28.2.2 - Decision trees and random forests 28.2.3 - Bayesian networks 28.2.4 - Neural networks 28.2.5 - Support vector machines 28.2.6 - Other machine learning algorithms 28.3 - Machine learning guidelines 28.3.1 - Typical machine learning workflow and semantics 28.3.2 - Tools for machine learning 28.3.3 - Preparing data, feature engineering and feature selection 28.3.4 - Model selection 28.3.5 - Model evaluation 28.3.6 - Example application 28.4 - The future of machine learning in coastal processes References 29 - Future challenges in beach management as contested spaces Chapter outline 29.1 - Introduction 29.2 - Beach dynamics and coastal management 29.3 - Shoreline boundary shifts 29.4 - Managing the challenges of landward translation of beaches 29.5 - Beach management in the future—some examples 29.6 - Conclusion Acknowledgements References