دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Sharon L. Lohr
سری: Texts in statistical science
ISBN (شابک) : 9780367279509, 9780429298899
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Sampling: Design and Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نمونه گیری: طراحی و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"این سطح برای یک رشته آمار سطح بالا در مقطع کارشناسی یا کارشناسی ارشد مناسب است. نمونه گیری: طراحی و تجزیه و تحلیل (SDA) همچنین برای یک رشته غیرآماری با تمایل به درک مفاهیم نمونه گیری از یک جمعیت محدود مفید خواهد بود. یک دانشجو. با صبر و حوصله برای بررسی دقیق آمارهای نظرسنجی، از محتوایی که SDA ارائه می دهد، حتی بیشتر به دست می آید. به روز رسانی های SDA پتانسیل غنی سازی کلاس های نمونه گیری سنتی نظرسنجی در هر دو سطح کارشناسی و کارشناسی ارشد را دارد. بحث های جدید در مورد نرخ پاسخ پایین، غیر -بررسیهای احتمالات، و اینترنت بهعنوان حالت جمعآوری دادهها، ارزش خاصی دارند، زیرا این مسائل آماری در عمل نظرسنجی در سالهای اخیر اهمیت فزایندهای پیدا کردهاند... من مشتاقانه نسخه جدید SDA را به عنوان کتاب درسی مورد نیاز انتخاب میکنم." (امیلی برگ، دانشگاه ایالتی آیووا) نرخ بیکاری چقدر است؟ مساحت کل زمین های زیر کشت سویا چقدر است؟ چند نفر آنتی بادی در برابر ویروس عامل COVID-19 دارند؟ نمونهبرداری: طراحی و تحلیل، ویرایش سوم به شما نشان میدهد که چگونه نظرسنجیها را برای پاسخ به این سؤالات و سؤالات دیگر طراحی و تجزیه و تحلیل کنید. این متن معتبر که به عنوان مرجع استاندارد توسط سازمانهای نظرسنجی متعدد استفاده میشود، اصول نمونهگیری را با مثالهایی از علوم اجتماعی، تحقیقات افکار عمومی، بهداشت عمومی، تجارت، کشاورزی و محیطزیست آموزش میدهد. خوانندگان باید با مفاهیم یک کلاس آمار مقدماتی از جمله احتمال و رگرسیون خطی آشنا باشند. بخش های اختیاری شامل تئوری آماری برای خوانندگانی است که با آمار ریاضی آشنا هستند. ویرایش سوم، به طور کامل اصلاح شده تا تحقیقات و کاربردهای اخیر را در بر گیرد، شامل فصل جدیدی در مورد نمونههای غیراحتمالی است - زمان استفاده از آنها و نحوه ارزیابی کیفیت آنها. بیش از 200 مثال و تمرین جدید به مجموعه های گسترده در ویرایش دوم اضافه شده است. وبسایت همراه SDA شامل مجموعههای داده، کد رایانه و پیوندهایی به دو کتاب تکمیلی قابل دانلود رایگان (همچنین در جلد شومیز موجود است) است که راهنماهای گام به گام - همراه با کد، خروجی مشروح و نکات مفید - را برای کار در SDA ارائه میکند. مثال ها. مربیان می توانند از نرم افزار R یا SAS(R) استفاده کنند. SAS(R) Software Companion for Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (2022, CRC Press) R Companion for Sampling: Design and Analysis, Third Edition by Yan Lu and Sharon L. Lohr (2022, CRC Press) )
"The level is appropriate for an upper-level undergraduate or graduate-level statistics major. Sampling: Design and Analysis (SDA) will also benefit a non-statistics major with a desire to understand the concepts of sampling from a finite population. A student with patience to delve into the rigor of survey statistics will gain even more from the content that SDA offers. The updates to SDA have potential to enrich traditional survey sampling classes at both the undergraduate and graduate levels. The new discussions of low response rates, non-probability surveys, and internet as a data collection mode hold particular value, as these statistical issues have become increasingly important in survey practice in recent years... I would eagerly adopt the new edition of SDA as the required textbook." (Emily Berg, Iowa State University) What is the unemployment rate? What is the total area of land planted with soybeans? How many persons have antibodies to the virus causing COVID-19? Sampling: Design and Analysis, Third Edition shows you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches the principles of sampling with examples from social sciences, public opinion research, public health, business, agriculture, and ecology. Readers should be familiar with concepts from an introductory statistics class including probability and linear regression; optional sections contain statistical theory for readers familiar with mathematical statistics. The third edition, thoroughly revised to incorporate recent research and applications, includes a new chapter on nonprobability samples--when to use them and how to evaluate their quality. More than 200 new examples and exercises have been added to the already extensive sets in the second edition. SDA's companion website contains data sets, computer code, and links to two free downloadable supplementary books (also available in paperback) that provide step-by-step guides--with code, annotated output, and helpful tips--for working through the SDA examples. Instructors can use either R or SAS(R) software. SAS(R) Software Companion for Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (2022, CRC Press) R Companion for Sampling: Design and Analysis, Third Edition by Yan Lu and Sharon L. Lohr (2022, CRC Press)
Cover Half Title Series Page Title Page Copyright Page Dedication Contents Preface Symbols and Acronyms 1. Introduction 1.1. Guidance from Samples 1.2. Populations and Representative Samples 1.3. Selection Bias 1.3.1. Convenience Samples 1.3.2. Purposive or Judgment Samples 1.3.3. Self-Selected Samples 1.3.4. Undercoverage 1.3.5. Overcoverage 1.3.6. Nonresponse 1.3.7. What Good Are Samples with Selection Bias? 1.4. Measurement Error 1.5. Questionnaire Design 1.6. Sampling and Nonsampling Errors 1.7. Why Use Sampling? 1.7.1. Advantages of Taking a Census 1.7.2. Advantages of Taking a Sample Instead of a Census 1.8. Chapter Summary 1.9. Exercises 2. Simple Probability Samples 2.1. Types of Probability Samples 2.2. Framework for Probability Sampling 2.3. Simple Random Sampling 2.4. Sampling Weights 2.5. Confidence Intervals 2.6. Using Statistical Software to Analyze Survey Data 2.7. Determining the Sample Size 2.8. Systematic Sampling 2.9. Randomization Theory for Simple Random Sampling* 2.10. Model-Based Theory for Simple Random Sampling* 2.11. When Should a Simple Random Sample Be Used? 2.12. Chapter Summary 2.13. Exercises 3. Stratified Sampling 3.1. What Is Stratified Sampling? 3.2. Theory of Stratified Sampling 3.3. Sampling Weights in Stratified Random Sampling 3.4. Allocating Observations to Strata 3.4.1. Proportional Allocation 3.4.2. Optimal Allocation 3.4.3. Allocation for Specified Precision within Strata 3.4.4. Which Allocation to Use? 3.4.5. Determining the Total Sample Size 3.5. Defining Strata 3.6. Model-Based Theory for Stratified Sampling* 3.7. Chapter Summary 3.8. Exercises 4. Ratio and Regression Estimation 4.1. Ratio Estimation in Simple Random Sampling 4.1.1. Why Use Ratio Estimation? 4.1.2. Bias and Mean Squared Error of Ratio Estimators 4.1.3. Ratio Estimation with Proportions 4.1.4. Ratio Estimation Using Weight Adjustments 4.1.5. Advantages of Ratio Estimation 4.2. Regression Estimation in Simple Random Sampling 4.3. Estimation in Domains 4.4. Poststratification 4.5. Ratio Estimation with Stratified Sampling 4.6. Model-Based Theory for Ratio and Regression Estimation* 4.6.1. A Model for Ratio Estimation 4.6.2. A Model for Regression Estimation 4.6.3. Differences between Model-Based and Design-Based Estimators 4.7. Chapter Summary 4.8. Exercises 5. Cluster Sampling with Equal Probabilities 5.1. Notation for Cluster Sampling 5.2. One-Stage Cluster Sampling 5.2.1. Clusters of Equal Sizes: Estimation 5.2.2. Clusters of Equal Sizes: Theory 5.2.3. Clusters of Unequal Sizes 5.3. Two-Stage Cluster Sampling 5.4. Designing a Cluster Sample 5.4.1. Choosing the psu Size 5.4.2. Choosing Subsampling Sizes 5.4.3. Choosing the Sample Size (Number of psus) 5.5. Systematic Sampling 5.6. Model-Based Theory for Cluster Sampling* 5.6.1. Estimation Using Models 5.6.2. Design Using Models 5.7. Chapter Summary 5.8. Exercises 6. Sampling with Unequal Probabilities 6.1. Sampling One Primary Sampling Unit 6.2. One-Stage Sampling with Replacement 6.2.1. Selecting Primary Sampling Units 6.2.2. Theory of Estimation 6.2.3. Designing the Selection Probabilities 6.2.4. Weights in Unequal-Probability Sampling with Replacement 6.3. Two-Stage Sampling with Replacement 6.4. Unequal-Probability Sampling without Replacement 6.4.1. The Horvitz–Thompson Estimator for One-Stage Sampling 6.4.2. Selecting the psus 6.4.3. The Horvitz–Thompson Estimator for Two-Stage Sampling 6.4.4. Weights in Unequal-Probability Samples 6.5. Examples of Unequal-Probability Samples 6.6. Randomization Theory Results and Proofs* 6.7. Model-Based Inference with Unequal-Probability Samples* 6.8. Chapter Summary 6.9. Exercises 7. Complex Surveys 7.1. Assembling Design Components 7.1.1. Building Blocks for Surveys 7.1.2. Ratio Estimation in Complex Surveys 7.1.3. Simplicity in Survey Design 7.2. Sampling Weights 7.2.1. Constructing Sampling Weights 7.2.2. Self-Weighting and Non-Self-Weighting Samples 7.3. Estimating Distribution Functions and Quantiles 7.4. Design Effects 7.5. The National Health and Nutrition Examination Survey 7.6. Graphing Data from a Complex Survey 7.6.1. Univariate Plots 7.6.2. Bivariate Plots 7.7. Chapter Summary 7.8. Exercises 8. Nonresponse 8.1. Effects of Ignoring Nonresponse 8.2. Designing Surveys to Reduce Nonresponse 8.3. Two-Phase Sampling 8.4. Response Propensities and Mechanisms for Nonresponse 8.4.1. Auxiliary Information for Treating Nonresponse 8.4.2. Methods to Adjust for Nonresponse 8.4.3. Response Propensities 8.4.4. Types of Missing Data 8.5. Adjusting Weights for Nonresponse 8.5.1. Weighting Class Adjustments 8.5.2. Regression Models for Response Propensities 8.6. Poststratification 8.6.1. Poststratification Using Weights 8.6.2. Raking Adjustments 8.6.3. Steps for Constructing Final Survey Weights 8.6.4. Advantages and Disadvantages of Weighting Adjustments 8.7. Imputation 8.7.1. Deductive Imputation 8.7.2. Cell Mean Imputation 8.7.3. Hot-Deck Imputation 8.7.4. Regression Imputation and Chained Equations 8.7.5. Imputation from Another Data Source 8.7.6. Multiple Imputation 8.7.7. Advantages and Disadvantages of Imputation 8.8. Response Rates and Nonresponse Bias Assessments 8.8.1. Calculating and Reporting Response Rates 8.8.2. What Is an Acceptable Response Rate? 8.8.3. Nonresponse Bias Assessments 8.9. Chapter Summary 8.10. Exercises 9. Variance Estimation in Complex Surveys 9.1. Linearization (Taylor Series) Methods 9.2. Random Group Methods 9.2.1. Replicating the Survey Design 9.2.2. Dividing the Sample into Random Groups 9.3. Resampling and Replication Methods 9.3.1. Balanced Repeated Replication (BRR) 9.3.2. Jackknife 9.3.3. Bootstrap 9.3.4. Creating and Using Replicate Weights 9.4. Generalized Variance Functions 9.5. Confidence Intervals 9.5.1. Confidence Intervals for Smooth Functions of Population Totals 9.5.2. Confidence Intervals for Population Quantiles 9.6. Chapter Summary 9.7. Exercises 10. Categorical Data Analysis in Complex Surveys 10.1. Chi-Square Tests with Multinomial Sampling 10.1.1. Testing Independence of Factors 10.1.2. Testing Homogeneity of Proportions 10.1.3. Testing Goodness of Fit 10.2. Effects of Survey Design on Chi-Square Tests 10.2.1. Contingency Tables for Data from Complex Surveys 10.2.2. Effects on Hypothesis Tests and Confidence Intervals 10.3. Corrections to Chi-Square Tests 10.3.1. Wald Tests 10.3.2. Rao–Scott Tests 10.3.3. Model-Based Methods for Chi-Square Tests 10.4. Loglinear Models 10.4.1. Loglinear Models with Multinomial Sampling 10.4.2. Loglinear Models in a Complex Survey 10.5. Chapter Summary 10.6. Exercises 11. Regression with Complex Survey Data 11.1. Model-Based Regression in Simple Random Samples 11.2. Regression with Complex Survey Data 11.2.1. Point Estimation 11.2.2. Standard Errors 11.2.3. Multiple Regression 11.2.4. Regression Using Weights versus Weighted Least Squares 11.3. Using Regression to Compare Domain Means 11.4. Interpreting Regression Coefficients from Survey Data 11.4.1. Purposes of Regression Analyses 11.4.2. Model-Based and Design-Based Inference 11.4.3. Survey Weights and Regression 11.4.4. Survey Design and Standard Errors 11.4.5. Mixed Models for Cluster Samples 11.5. Logistic Regression 11.6. Calibration to Population Totals 11.7. Chapter Summary 11.8. Exercises 12. Two-Phase Sampling 12.1. Theory for Two-Phase Sampling 12.2. Two-Phase Sampling with Stratification 12.3. Ratio and Regression Estimation in Two-Phase Samples 12.3.1. Two-Phase Sampling with Ratio Estimation 12.3.2. Generalized Regression Estimation in Two-Phase Sampling 12.4. Jackknife Variance Estimation for Two-Phase Sampling 12.5. Designing a Two-Phase Sample 12.5.1. Two-Phase Sampling with Stratification 12.5.2. Optimal Allocation for Ratio Estimation 12.6. Chapter Summary 12.7. Exercises 13. Estimating the Size of a Population 13.1. Capture–Recapture Estimation 13.1.1. Contingency Tables for Capture–Recapture Experiments 13.1.2. Confidence Intervals for 13.1.3. Using Capture–Recapture on Lists 13.2. Multiple Recapture Estimation 13.3. Chapter Summary 13.4. Exercises 14. Rare Populations and Small Area Estimation 14.1. Sampling Rare Populations 14.1.1. Stratified Sampling with Disproportional Allocation 14.1.2. Two-Phase Sampling 14.1.3. Unequal-Probability Sampling 14.1.4. Multiple Frame Surveys 14.1.5. Network or Multiplicity Sampling 14.1.6. Snowball Sampling 14.1.7. Sequential Sampling 14.2. Small Area Estimation 14.2.1. Direct Estimators 14.2.2. Synthetic and Composite Estimators 14.2.3. Model-Based Estimators 14.3. Chapter Summary 14.4. Exercises 15. Nonprobability Samples 15.1. Types of Nonprobability Samples 15.1.1. Administrative Records 15.1.2. Quota Samples 15.1.3. Judgment Samples 15.1.4. Convenience Samples 15.2. Selection Bias and Mean Squared Error 15.2.1. Random Variables Describing Participation in a Sample 15.2.2. Bias and Mean Squared Error of a Sample Mean 15.3. Reducing Bias of Estimates from Nonprobability Samples 15.3.1. Weighting 15.3.2. Estimate the Values of the Missing Units 15.3.3. Measures of Uncertainty for Nonprobability Samples 15.4. Nonprobability versus Low-Response Probability Samples 15.5. Chapter Summary 15.6. Exercises 16. Survey Quality 16.1. Coverage Error 16.1.1. Measuring Coverage and Coverage Bias 16.1.2. Coverage and Survey Mode 16.1.3. Improving Coverage 16.2. Nonresponse Error 16.3. Measurement Error 16.3.1. Measuring and Modeling Measurement Error 16.3.2. Reducing Measurement Error 16.3.3. Sensitive Questions 16.3.4. Randomized Response 16.4. Processing Error 16.5. Total Survey Quality 16.6. Chapter Summary 16.7. Exercises A. Probability Concepts Used in Sampling A.1. Probability A.1.1. Simple Random Sampling with Replacement A.1.2. Simple Random Sampling without Replacement A.2. Random Variables and Expected Value A.3. Conditional Probability A.4. Conditional Expectation A.5. Exercises Bibliography Index