دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hatto Schneider
سری:
ISBN (شابک) : 3662660482, 9783662660485
ناشر: Springer Vieweg
سال نشر: 2023
تعداد صفحات: 467
[468]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Rotor Balancing: Fundamentals for Systematic Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تعادل روتور: مبانی فرآیندهای سیستماتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بالانس کردن یک مرحله ضروری برای تضمین کیفیت روتورها است. با هر توسعه بیشتر روتورها، الزامات برای تعادل فناوری تغییر می کند. اصول مهم تعادل در کتاب توضیح داده شده است. این به عنوان ابزاری برای حل مشکلات متعادل کننده دائماً در حال ظهور به طور مناسب و اقتصادی عمل می کند. استاندارد جدید DIN ISO 19499 به تفصیل در ویرایش هشتم توضیح داده شده است. تغییرات در نظر گرفته شده برای تمام استانداردهای متعادل کننده توسط DIN برای اولین بار شرح داده شده است.
Für die Qualitätssicherung von Rotoren ist das Auswuchten ein unverzichtbarer Schritt. Dabei verändern sich mit jeder Weiterentwicklung der Rotoren die Anforderungen an die Auswuchttechnik. Wichtige Prinzipien des Auswuchtens werden in dem Buch erklärt. Es dient als Werkzeug, um die stets neu auftretenden Probleme beim Auswuchten sachgerecht und wirtschaftlich lösen zu können. In der 8. Auflage wird die neue Norm DIN ISO 19499 ausführlich erläutert. Die beabsichtigten Bearbeitungen aller Auswuchtnormen vonseiten des DIN werden erstmals beschrieben.
Preface Preface to the 9th (German) Edition Contents 1 Introduction 1.1 Preliminary Note 1.2 Importance and Quality of Balancing 1.3 Development of Balancing Technology and Balancing Machines 1.3.1 Unbalance Types 1.3.2 Balancing Machines 1.4 Standards and Guidelines 1.4.1 Historical Course 1.4.2 Current Situation 1.5 List of Current Standards 2 Physical Basics 2.1 Preliminary Note 2.2 Physical Quantities 2.3 Scalar and Vector 2.3.1 Addition 2.3.2 Multiplication 2.4 System of Units 2.4.1 Basic Quantities 2.4.2 Derived Quantities 2.5 Physical Laws 2.5.1 Newton’s 2nd Law 2.5.2 Mass Attraction 2.6 Circular Motion 2.6.1 Plane Angle 2.6.2 Angular Frequency 2.6.3 Circular Speed 2.6.4 Angular Acceleration 2.6.5 Circular Acceleration 2.6.6 Torque 2.6.7 Moment of Inertia 2.6.8 Radial Acceleration 2.6.9 Centrifugal Force 2.7 Vibration 2.7.1 Single Mass Oscillator with Centrifugal Excitation 2.7.1.1 Subcritical Area 2.7.1.2 Resonance Area 2.7.1.3 Supercritical Area 2.7.2 Degrees of Freedom 2.7.3 Dynamic Stiffness 3 Terms and Explanations 3.1 Preliminary Note 3.2 Rotor Balancing 3.3 Balancing Task 3.4 Rotor 3.5 Unbalance 3.6 Unbalance Condition 3.7 Unbalance Behaviour 3.8 Unbalance Tolerances 3.9 Correction 3.10 Correction Plane 3.11 Shaft Axis 3.12 Rotor Behaviour 3.12.1 Rotors with Rigid Behaviour 3.12.2 Rotors with Flexible Behaviour 3.12.2.1 Rotors with Shaft Elastic Behaviour 3.12.2.2 Rotors with Component-Elastic Behaviour 3.12.2.3 Rotors with Settling Behaviour 3.13 Rotor Concept 4 Theory of Balancing 4.1 Preliminary Note 4.2 General 4.2.1 Unbalance State 4.2.2 Rotor Concept 4.2.3 Rotor Behaviour 4.2.3.1 General 4.2.3.2 Effects of Rotor Behaviour 4.2.3.3 Principle of Order 4.2.4 Unbalance Tolerances 4.2.5 Balancing Task 4.3 Unbalances and Correction 4.4 Unbalance of the Disc-Shaped Rotor 4.5 Unbalance of a General Rotor 4.5.1 Resultant Unbalance 4.5.2 Moment Unbalance 4.5.3 Couple Unbalance 4.5.4 Modal Unbalance 4.5.5 Equivalent Modal Unbalance 4.6 Overview of the Balancing Tasks 4.6.1 General 4.6.2 The Balanced Rotor 4.6.3 Single-Plane Balancing 4.6.4 Two-Plane Balancing 4.6.5 Multi-Plane Balancing 4.6.5.1 Example 1 4.6.5.2 Example 2 4.6.5.3 Example 3 4.6.5.4 Example 4 4.7 Conclusion of the New Perspective 4.7.1 Significance of Resonances 4.7.2 Significance of Flexural Resonances above the Service Speed 4.7.3 Treatment of Flexural Resonances above Service Speed 4.8 Handling Unbalance Tolerances 4.8.1 Concept 4.8.2 Procedure 4.8.2.1 Example 1 4.8.2.2 Example 2 4.8.2.3 Example 3 4.8.2.4 Example 4 5 Theory of the Rotor with Rigid Behaviour 5.1 Preliminary Remark 5.2 Rotor Behaviour 5.3 Unbalanced Condition 5.3.1 Static Unbalance 5.3.1.1 Example 1 5.3.1.2 Example 2 5.3.1.3 Example 3 5.3.1.4 Example 4 5.3.2 Resulting Unbalance 5.3.2.1 Example 1 5.3.2.2 Example 2 5.3.3 Moment Unbalance 5.3.3.1 Example 5.3.4 Dynamic Unbalance 5.4 Display of the Unbalance Condition 5.4.1 Unbalances 5.4.2 Position of the Axis of Inertia 5.4.3 Overview 6 Theory of the Rotor with Flexible Behaviour 6.1 Preliminary Note 6.2 Settling Behaviour 6.3 Component-Elastic Rotor Behaviour 6.4 Shaft Elastic Rotor Behaviour 6.4.1 Idealised Rotor with Shaft-Elastic Behaviour 6.4.2 Influence of Bearing Stiffness 6.4.3 Flexural Resonance Speeds at Standstill 6.4.4 General Rotor with Shaft-Elastic Behaviour 6.4.5 Unbalance Effects on the Rotor with Shaft-Elastic Behaviour 6.4.5.1 Modal Unbalances 6.4.5.2 Equivalent Modal Unbalances 6.4.6 Balancing a Rotor with Shaft-Elastic Behaviour 6.4.6.1 First Flexural Mode 6.4.6.2 Second Flexural Mode 6.4.6.3 Third Flexural Mode 6.4.7 Choice of Correction Planes 6.4.7.1 Variety of Rotors 6.4.7.2 Example 1 6.4.7.3 Example 2 6.4.7.4 Example 3 6.4.7.5 Example 4 6.4.7.6 Example 5 6.4.7.7 Example 6 6.4.7.8 Example 7 7 Tolerances for Rotors with Rigid Behaviour 7.1 Preliminary Note 7.2 Basics 7.2.1 Tolerance Planes 7.2.2 Correction Planes 7.2.3 Limitation of the Permissible Residual Unbalance 7.3 Similarity Considerations 7.3.1 Rotor Mass and Permissible Residual Unbalance 7.3.2 Service Speed and Permissible Residual Unbalance 7.3.2.1 Special Cases 7.4 Determining the Permissible Residual Unbalance 7.4.1 General 7.4.2 Balancing Grades G 7.4.2.1 Classification 7.4.2.2 Special Cases 7.4.2.3 Permissible Residual Unbalance 7.4.3 Experimental Determination 7.4.4 Limits from Specific Targets 7.4.4.1 Limitation by Bearing Forces 7.4.4.2 Limitation Through Vibrations 7.4.5 Proven Experience 7.4.5.1 Almost Identical Rotor Size 7.4.5.2 Similar Rotor Size 7.5 Allocation to Tolerance Planes 7.5.1 Rotors with a Single Tolerance Plane 7.5.1.1 Practical Review 7.5.1.2 Acceptance 7.5.2 Rotors with Two Tolerance Planes 7.5.2.1 Restrictions on Inboard Rotors 7.5.2.2 Restrictions on Outboard Rotors 7.6 Assignment of the Unbalance Tolerance to the Correction Planes 7.6.1 Single-Plane Case 7.6.2 Two-Plane Case 7.7 Assembled Rotors 7.8 Unbalance Readings for the Balancing Process 7.8.1 Example 7.9 Checking the Residual Unbalance 7.9.1 Acceptance Criteria 7.9.2 Unbalance Readings in Tolerance 7.9.3 Unbalance Readings Outside Tolerance 7.9.4 Region of Uncertainty 7.9.5 Particularities when Measuring Unbalances 7.9.6 Checking on a Balancing Machine 7.9.7 Checking Without a Balancing Machine 8 Tolerances for Rotors with Flexible Behaviour 8.1 Preliminary Note 8.2 General 8.2.1 Balancing Target 8.2.2 Balancing Procedures 8.3 Tolerance Criteria 8.3.1 Vibrations 8.3.1.1 Vibrations According to ISO 21940-12 8.3.1.2 Problems with Vibrations 8.3.1.3 Conclusion 8.3.2 Unbalances 8.3.2.1 Total Permissible Unbalance 8.3.2.2 Tolerance Planes 8.3.2.3 Distribution of the Total Permissible Unbalance 8.3.2.4 Modal Influence on the Permissible Unbalances 8.4 Unbalance Tolerances for Procedures A to I 8.4.1 Tolerances of Low-Speed Balancing Procedures 8.4.1.1 Procedure A: Single-Plane Balancing 8.4.1.2 Procedure B: Two-Plane Balancing 8.4.1.3 Procedure C: Balancing Individual Components Before Assembly 8.4.1.4 Procedure D: Balancing After Limiting the Starting Unbalance 8.4.1.5 Procedure E: Sequential Balancing During Assembly 8.4.1.6 Procedure F: Balancing in Optimal Planes 8.4.2 Tolerances of High-Speed Balancing Procedures 8.4.2.1 Procedure G: Multiple-Speed Balancing 8.4.2.2 Procedure H: Balancing at Service Speed 8.4.2.3 Procedure I: Balancing at a Fixed Speed 8.5 Unbalance Tolerances for Procedure G 8.5.1 Unbalance Tolerances According to ISO 21940-12 8.5.2 Unbalance Tolerances According to DIN ISO 21940-12, Beiblatt 1 8.5.2.1 Distribution to Several Unbalances 8.5.2.1.1 Even Distribution 8.5.2.1.2 Weighted Distribution 8.6 Tolerances for the Balancing Process 8.7 Assessment of the Unbalance State Achieved 8.7.1 Assessment by Vibrations 8.7.1.1 Assessment in a High-Speed Balancing Machine 8.7.1.2 Assessment in the Test Field 8.7.1.3 Assessment in Service Condition 8.7.2 Assessment by Unbalances 8.7.2.1 Assessment in a Low-Speed Balancing Machine 8.7.2.2 Assessment in a High-Speed Balancing System 8.7.2.3 Assessment in the Test Field 8.7.2.4 Assessment in Service 8.8 Susceptibility and Sensitivity of Machines to Unbalance 8.8.1 Classification of the Susceptibility of Machines 8.8.2 Modal Sensitivity Ranges 8.8.3 Limit Curves 8.8.3.1 Example 1 8.8.3.2 Example 2 8.8.3.3 Special Case Acceleration 8.8.3.4 Example 8.8.4 Experimental Determination of the Modal Sensitivity 8.8.4.1 Example 1 8.8.4.2 Example 2 9 Procedures for Balancing Rotors with Rigid Behaviour 9.1 Preliminary Note 9.2 Bodies Without Own Bearing Journals 9.2.1 General 9.2.2 Unbalances Due to Assembly 9.2.3 Index Balancing 9.2.3.1 Single Plane with Unbalances 9.2.3.2 Single Plane with Fit-Related Errors 9.2.3.3 Generalisation 9.2.4 Further Use of the Index Balancing Method 9.2.5 Auxiliary Shafts, Adapters 9.3 Assemblies 9.3.1 General 9.3.2 Procedure 9.3.2.1 Example 1 9.3.2.2 Example 2 9.3.3 Interchangeability of Parts 9.3.4 Correction of the Assembly Error 9.3.5 Dummies (Substitute Masses) 9.4 Rotors with Parallel Keys 9.4.1 General 9.4.2 Shaft with Complete Key 9.4.3 Shaft with Half Key 9.4.4 Influence on the Unbalance Condition 9.4.5 Bias for a Parallel Key 9.4.6 Constructive Measures 10 Procedures for Balancing Rotors with Flexible Behaviour 10.1 Preliminary Note 10.2 General 10.3 Rotor Configurations 10.3.1 Basic Elements Of Shaft-Elastic Rotors 10.3.2 Balancing Principles 10.3.3 Rotor with Discs 10.3.3.1 A Single Disc 10.3.3.2 Two Discs 10.3.3.3 More than Two Discs 10.3.4 Rigid Sections 10.3.5 Rolls 10.3.6 Integral Rotor 10.3.7 Combinations 10.3.8 Repairs 10.4 Balancing Procedures 10.4.1 Procedure A: Single-Plane Balancing 10.4.2 Procedure B: Two-Plane Balancing 10.4.3 Procedure C: Balancing Individual Components Before Assembly 10.4.4 Procedure D: Balancing After Limiting The Initial Unbalance 10.4.5 Procedure E: Sequential Balancing During Assembly 10.4.5.1 Problem with Transfer Unbalances 10.4.5.2 Solution 10.4.5.3 Problem Assembly 10.4.6 Procedure F: Balancing in Optimal Planes 10.4.7 Procedure G: Balancing at Multiple Speeds 10.4.7.1 2 + N procedure and N + 2 Procedure 10.4.7.2 Correction Ratio 10.4.7.3 Recommendation 10.4.7.4 Computer Support 10.4.7.5 Beiblatt 1 to DIN ISO 21940-12 10.4.8 Procedure H: Balancing at Service Speed 10.4.9 Procedure I: Balancing at a Fixed Speed 10.4.10 Settling Behaviour Procedure 11 Description of the Balancing Task 11.1 Preliminary Note 11.2 Balancing Rotors with Rigid Behaviour 11.2.1 Rotor with Journals 11.2.1.1 Tabular Description of a Rotor Type 11.2.1.2 More Tables 11.2.1.3 Maximum Data 11.2.1.4 Additional Information on the Rotors 11.2.2 Rotors Without Journals 11.3 Balancing Rotors with Flexible Behaviour 11.3.1 Low-Speed Balancing 11.3.2 High-Speed Balancing 11.3.2.1 General 11.3.2.2 Tabular Overview 12 Balancing Machines 12.1 Preliminary Note 12.2 Quotation and Technical Documentation 12.2.1 Horizontal Balancing Machines 12.2.1.1 Limits for Rotor Mass and Unbalance 12.2.1.2 Efficiency of the Measuring Run 12.2.1.3 Unbalance Reduction Ratio RUR 12.2.1.4 Rotor Dimensions 12.2.1.5 Bearing Journal 12.2.1.6 Setting Range of the Correction Planes 12.2.1.7 Drive 12.2.1.8 Brake 12.2.1.9 Additional Information 12.2.2 Vertical Balancing Machines 12.2.2.1 Limits for Rotor Mass and Unbalance 12.2.2.2 Rotor Dimensions 12.2.2.3 Influence of the Moment Unbalance 12.2.3 Non-Rotating Balancing Machines 12.2.4 High-Speed Balancing Machines 12.2.4.1 Drive 12.2.4.2 Bearing Pedestals 12.2.4.3 Measuring Device 12.3 Technical Details and their Assessment 12.3.1 Drive 12.3.1.1 Squirrel-Cage Motor 12.3.1.2 Slip Ring Motor 12.3.1.3 DC Motor 12.3.1.4 Drive Power 12.3.1.5 Cardan Shaft Drive 12.3.1.6 Belt Drive 12.3.1.7 Induction Field Drive 12.3.1.8 Self-Drive 12.3.1.9 Compressed Air Drive 12.3.2 Display Systems 12.3.3 Functional Principle of the Balancing Machine 12.3.4 Brake 12.3.5 Speed 12.3.6 Calibration and Setting of the Measuring Device 12.3.6.1 Soft-Bearing Balancing Machine 12.3.6.2 Hard-Bearing Balancing Machine 12.3.7 Foundation 12.3.8 Minimum Achievable Residual Unbalance Umar 12.3.9 Bearing Support 12.3.9.1 Twin-Roller Bearing 12.3.9.2 V-Block Bearing 12.3.9.3 Sleeve-Bearing 12.3.9.4 Spindle Bearing 12.3.9.5 Service Bearings 12.3.9.6 Special Bearing Systems 12.3.10 Mass Moment of Inertia, Number of Cycles 12.3.11 Measuring Principle 12.3.12 Test Rotors, Test Masses 12.3.12.1 Test Rotors 12.3.12.2 Test Masses 12.3.13 Overload 12.3.14 Environmental Influences 12.3.15 Unbalance Reduction Ratio RUR 12.3.16 Economic Efficiency 12.4 Boundary Conditions 13 Tests on Balancing Machines 13.1 Preliminary Note 13.2 Statistics with Unbalances 13.2.1 Circular Scatter Field 13.2.2 Ring-Shaped Scatter Field 13.2.2.1 Example 1 13.2.2.2 Example 2 13.2.3 Characteristics of One- and Two-Dimensional Normal Distributions 13.2.4 Further Special Features 13.2.5 Spot Checks or a Hundred Percent Check 13.2.6 Key Figures 13.2.7 Rejects 13.3 Test Rotors and Test Masses 13.3.1 General 13.3.2 Test Rotors Overview 13.3.2.1 Individual Test Rotors 13.3.3 Test Masses 13.3.4 Test Rotors in Detail 13.3.4.1 Type A Test Rotors 13.3.4.2 Test Rotors Type B 13.3.4.3 Test Rotors Type C 13.3.5 Test Conditions 13.4 Test of the Minimum Achievable Residual Unbalance Umar 13.4.1 Start Condition 13.4.2 Correction 13.4.3 Test Runs with Test Masses 13.4.4 Evaluation of the Umar Test 13.4.5 Abbreviated Umar Test 13.5 Unbalance Reduction Ratio Test RUR 13.5.1 Start Condition 13.5.2 Test Runs with Test Masses 13.5.3 Evaluation of the RUR Test 13.5.4 Abbreviated RUR Test 13.6 Test of the Moment Unbalance Influence Ratio IMU 13.6.1 Starting Conditions 13.6.2 Test Runs with Test Masses 13.6.3 Evaluation of the IMU Test 13.7 Compensation Test for the Index Process 13.7.1 Start Condition 13.7.2 Test Runs with Test Masses 13.7.3 Evaluation of the Compensation Test 14 Unbalance Correction 14.1 Preliminary Note 14.2 Types of Correction 14.2.1 Material Removal 14.2.2 Relocating Material 14.2.3 Adding Material 14.3 Correction Time 14.3.1 Organisation of the Correction 14.3.2 Automation of the Correction 14.4 Correction Errors 14.4.1 Correction Masses 14.4.2 Correction Planes 14.4.3 Correction Radii 14.4.3.1 Radial Correction 14.4.3.2 Correction on the Circumference 14.4.3.3 Correction by Spreading Two Correction Masses 14.4.4 Correction Angle 14.4.5 Permissible Correction Errors 14.5 Unbalance Reduction Ratio 14.5.1 General 14.5.2 Small Correction Step 14.5.3 Large Correction Step 14.5.4 Series 15 Preparation and Execution of Rotor Balancing 15.1 Preliminary Note 15.2 Causes for Unbalances 15.3 Design Guidelines and Drawing Specifications 15.4 Layout of the Correction 15.5 Work Planning 15.5.1 Rotor Condition During Balancing 15.5.2 Permissible Unbalance Readings for the Balancing Process 15.5.2.1 Commonly Practiced Approach 15.5.2.2 Current Approach of the Standards 15.6 Automation 15.7 Loading and Unloading 15.8 Preparations on the Rotor 15.9 Production Cycle Rotor Balancing 16 Errors in the Balancing Process 16.1 Preliminary Note 16.2 Causes for Errors 16.2.1 General 16.2.2 Missing Parts 16.2.3 Additional Parts or Effects 16.2.4 Changed Rotor State 16.2.5 Rotor Behaviour is Not Reproducible 16.2.6 Unbalance Measurement 16.3 Handling of Errors 16.3.1 Error Types 16.3.1.1 Systematic Errors 16.3.1.2 Random Errors 16.3.1.3 Scalar Error 16.3.2 Determination of Errors 16.3.2.1 Estimation of Errors 16.3.2.2 Measuring Errors 16.3.2.3 Errors During Measurement 16.3.3 Treatment of Errors 16.3.3.1 Calculation of Systematic Errors 16.3.3.2 Calculation of Random Errors 16.3.3.3 Calculation of Scalar Errors 16.3.4 Determination of the Combined Error 16.4 Permissible Indications for the Residual Unbalance 16.5 Acceptance Criteria 16.5.1 General 16.5.2 Unbalance Readings in Tolerance 16.5.3 Unbalance Readings Outside the Tolerance 16.5.4 Region of Uncertainty 16.6 Special Methods for Measuring Errors 16.6.1 General 16.6.2 Measuring Systematic Errors 16.6.3 Measuring Random Errors 16.6.4 Measuring Scalar Errors 16.7 Examples of Errors and Their Handling 16.7.1 General 16.7.2 Examples 16.7.2.1 Movable Parts 16.7.2.2 Liquids or Solids in Cavities 16.7.2.3 Thermal Influences and Effects due to Gravity 16.7.2.4 Windage Effects 16.7.2.5 Magnetized Rotor 16.7.2.6 Tilted Service Ball Bearings 16.7.2.7 Incomplete Assembly 16.7.2.8 Coupling Face on Rotor 16.7.2.9 Fitting Errors 16.7.2.10 Relative Rotation of Mounted Parts 16.7.2.11 Adapter Unbalance 16.7.2.12 Unbalance of the Drive Shaft 16.7.2.13 Adapter Run-out 16.7.2.14 Eccentricity of Balancing Bearings 16.7.2.15 Systematic and Random Errors of the Measurement Chain 16.7.3 Specialties When Measuring Unbalances 16.7.3.1 Errors When Measuring on a Balancing Machine 16.7.3.2 Errors when Measuring Without a Balancing Machine 17 Protective Measures for Balancing 17.1 Preliminary Note 17.2 General 17.3 Dangers Due to the Rotor 17.4 Protection Classes 17.4.1 Protection Against Contact 17.4.2 Protection Against Particles or Parts 17.4.2.1 Area-specific Energy 17.4.2.2 Absolute energy 17.4.2.3 Impulse 17.5 Choice of Enclusures 17.6 Examples of Protection Classes 17.6.1 Class 0 17.6.2 Class A 17.6.3 Class B 17.6.4 Class C 17.6.5 Class D 17.7 Protection Class C for Universal Balancing Machines 17.7.1 Design of the Protection 17.7.2 Marking of the Protection 17.8 Hazards and Safety Requirements 18 In-Situ Balancing 18.1 Preliminary Note 18.2 Vibration Limits 18.3 Task 18.4 Theory of In-situ Balancing 18.4.1 Causes for Unbalances 18.4.2 Difficulties 18.4.3 Methodology 18.4.3.1 Correction in a Single Plane 18.4.3.2 Correction in Two Planes 18.4.3.3 Correction in More Than Two Planes 18.5 Practice of In-situ Balancing 18.5.1 Measuring Techniques 18.5.2 Measuring Planes 18.5.3 Boundary Conditions 18.6 ISO 21940-13 19 Symbols, Vocabulary and Definitions 19.1 Preliminary Note 19.2 Symbols 19.3 Vocabulary and Definitions 19.3.1 Mechanics—Mechanik—Mécaniques 19.3.2 Rotors—Rotoren—Rotors 19.3.3 Unbalance—Unwucht—Balourd 19.3.4 Balancing—Auswuchten—Équilibrage 19.3.5 Balancing Machines—Auswuchtmaschinen—Machines à équilibrer 19.3.6 Flexible Rotors—Nachgiebige Rotoren—Rotors flexibles 19.3.7 Rotating Rigid Free-Bodies—Rotierende starre freie Körper—Corps-libres rigides en rotation 19.3.8 Balancing Machine Tooling—Zubehör zu Auswuchtmaschinen—Outillage de machine à équilibrer 20 Documents for Calculations 20.1 Preliminary Note 20.2 Decimal Multiples and Decimal Parts 20.3 Conversion Factors for SI Units and Inch/Pound Units 20.4 Nomogramms, Diagramms 20.4.1 Nomogramms 20.4.2 Diagrams Image Sources References Index