دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Carlo Di Lauro
سری:
ISBN (شابک) : 0128213361, 9780128213360
ناشر: Elsevier Science Ltd
سال نشر: 2020
تعداد صفحات: 344
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Rotational Structure in Molecular Infrared Spectra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختار چرخشی در طیف های مادون قرمز مولکولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ساختار چرخشی در طیف های مادون قرمز مولکولی، ویرایش دوم، شکاف بین این موضوعات پیچیده و ابتدایی ترین روش ها در زمینه ساختار چرخشی در طیف مادون قرمز مولکول های گازی را پر می کند. این کتاب با ترکیب اطلاعات نظری پایه با کاربردهای پیشرفته، راهنمای مفیدی برای همه کسانی است که در کاربرد تکنیکهای طیفسنجی مولکولی و تفسیر طیفهای ارتعاشی-چرخشی مشارکت دارند. تفسیر طیف های ارتعاش-چرخش یک مهارت مهم در بسیاری از رشته های علمی است، از نانوشیمی تا تحقیقات سیاره ای، از این رو این کتاب یک منبع ایده آل است.
Rotational Structure in Molecular Infrared Spectra, Second Edition, fills the gap between these complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. Combining foundational theoretical information with advanced applications, this book is a useful guide for all those involved in the application of molecular spectroscopic techniques and the interpretation of vibration-rotation spectra. Interpreting vibration-rotation spectra is an important skill in many scientific disciplines, ranging from nanochemistry to planetary research, hence this book is an ideal resource.
Rotational Structure in Molecular Infrared Spectra Copyright Contents 1 The Vibration-Rotation Problem 1.1 Classical Kinetic Energy 1.1.1 The Eckart Conditions 1.1.2 Transformation to Normal Coordinates 1.1.3 Kinetic Energy in Terms of Momenta 1.2 The Quantum Mechanical Hamiltonian 1.2.1 Linear Molecules References 2 Interaction of Matter and Light 2.1 Time-Dependent Perturbations 2.2 A Charge in an Electromagnetic Field 2.3 A System of Charged Particles in a Radiation Field 2.3.1 Electric Dipole Transitions 2.3.2 A Higher Approximation: Magnetic Dipole and Electric Quadrupole Transitions 2.4 More on Electric Dipole Transitions 2.4.1 Radiation Density and Intensity 2.4.2 Einstein Coefficients and Line Strengths 2.4.3 The Integrated Absorption Coefficient 2.5 Spontaneous Emission References 3 Molecular Symmetry and Spectroscopy 3.1 Molecular Symmetry and Molecular Point Groups 3.2 Rotational Energy and Rotational Hamiltonian of Rigid Rotors 3.3 Rotational Symmetry and Rotational Groups 3.3.1 Spherical Top Rotors 3.3.2 Symmetric Top Rotors 3.3.3 Linear Rotors 3.3.4 Asymmetric Top Rotors 3.4 Molecular Deformations and Molecular Symmetry Groups 3.5 The Inversion Operation E* and Parity 3.6 The Complete Nuclear Permutation and Permutation-Inversion Groups 3.7 Feasible Operations and Molecular Symmetry Groups 3.8 The Extension of Molecular Symmetry Groups 3.8.1 Hydrogen Peroxide 3.8.2 Ethane-Like Molecules 3.8.3 Methanol and acetaldehyde 3.9 Time Reversal 3.10 A First Glance to Transition Selection Rules: Parity References 4 Symmetry of Wavefunctions in Vibration-Rotation Spectroscopy 4.1 Rotational Coordinates 4.2 Rotational Operators and Wavefunctions 4.2.1 Effects of Time Reversal 4.3 Molecular Vibrations 4.3.1 Vibrational Modes and Vibrational States of Symmetric Tops 4.3.2 Examples of overtones and combinations 4.3.3 C3v Molecules 4.3.4 D6h Molecules 4.4 Vibration-Rotation Wavefunctions 4.5 Linear Molecules 4.5.1 Angular Momenta 4.5.2 Symmetry Groups 4.6 Asymmetric Top Molecules 4.6.1 Rotational Symmetries 4.6.2 Correlation With the Symmetric Top Limits 4.7 Spherical Top Molecules References 5 Nuclear Spin Statistical Weights 5.1 Symmetries of Nuclear Spin, Rovibronic, and Total Wavefunctions 5.1.1 An Example: 12CH335Cl 5.1.2 Another Example: 14NH3 5.1.3 Hydrogen Peroxide: H216O2 5.2 Linear Molecules 5.3 Coupled and Uncoupled Nuclei 5.4 Molecules with no Symmetry Elements Reference 6 Expansion and Transformations of the Vibration-Rotation Hamiltonian 6.1 Expansion of the Vibration-Rotation Hamiltonian 6.1.1 Dimensionless Normal Coordinates and Associated Momenta 6.1.2 Expansion of Vn(q&e_020D7;) 6.1.3 Expansion of the Inverse of the Inertia Tensor 6.2 The Expanded Vibration-Rotation Hamiltonian 6.3 An Isolated Vibrational State 6.3.1 Effects of Interactions with Other Vibrational States 6.3.2 Higher Order Coriolis Coefficients References 7 Effects of Centrifugal Distortions 7.1 Linear Molecules 7.2 Symmetric Top Molecules 7.3 Spherical Top Molecules 7.4 Asymmetric Top Molecules 7.4.1 A and S Reductions References 8 SPECTRA OF SYMMETRIC TOP AND LINEAR MOLECULES 8.1 Molecular Degrees of Freedom 8.2 The Harmonic Oscillator-Rigid Rotor Approximation 8.3 Semirigid Symmetric Top Molecules 8.3.1 Nondegenerate Fundamental Vibrational States 8.3.2 Degenerate Fundamental Vibrational States 8.4 Overtones and Combinations 8.4.1 Degenerate Overtones and Combinations 8.4.2 Nondegenerate Overtones and Combinations 8.5 Linear Molecules 8.6 Vibration-Rotation Selection Rules: Line Intensities and Line Strengths 8.6.1 Overall Selection Rules 8.6.2 Vibrational and Rotational Selection Rules 8.6.3 C3v, D3h, and D3d Molecules 8.6.4 C6v and D6h Molecules 8.6.5 D2d Molecules 8.7 Parallel and Perpendicular Line Strengths 8.7.1 Vibrational Transition Moments 8.8 Line Strengths with Perturbed Upper States 8.9 Line Shapes 8.10 Main Spectral Features in Symmetric Tops and Linear Molecules 8.10.1 Transitions Between Nondegenerate Vibrational States 8.10.2 Transitions from Nondegenerate to Degenerate Vibrational States 8.10.3 Transitions from Gv=0 to Gv=±1 8.10.4 Transitions from Gv=n/2 to Gv=n/2±1 8.10.5 Transitions Between Degenerate Vibrational States 8.11 Lower and Upper State Combination Differences 8.12 Hot and Difference Bands 8.12.1 A Special Application of Hot Bands: Determination of the K-Structure Parameters of the Vibrational Ground State 8.13 Phase Conventions 8.14 Anharmonic Interactions 8.14.1 Vibrational l-Doubling 8.15 Coriolis Interactions 8.15.1 z-Axis Coriolis Operators 8.15.2 x,y-Axis Coriolis Operators 8.15.3 Nonvanishing Coriolis Coefficients 8.15.4 x,y-Coriolis Coupling and Intensity Perturbations 8.15.5 x,y-Coriolis Coupling and Perturbation-Induced Transitions 8.15.6 Transitions with K=0 and ΔK=0 8.16 l-Type Interactions and Doublings 8.16.1 Interactions and Doublings of the type l-(±2,±2) 8.16.2 Interactions and Doublings of the type l-(±2, ∓ 2) 8.16.3 Interactions and Doublings of the type l-(±2, ∓1) 8.16.4 l-Doubling in Linear Molecules 8.16.5 l-Perturbations in Overtones and Combinations 8.17 Higher Order Perturbations 8.18 Isolated Vibrational Levels and Polyads References 9 Spectra of Asymmetric Top Molecules 9.1 Rotational Energy 9.2 Orthorhombic Molecules 9.3 Vibration–Rotation Transitions 9.3.1 A-Type Transitions 9.3.2 C-Type Transitions 9.3.3 B-Type Transitions 9.4 Hybrid Bands 9.5 Near-Symmetric Tops 9.6 Anharmonic and Coriolis Interactions 9.6.1 Anharmonic Interactions 9.6.2 Coriolis Interactions 9.7 Intensity Calculation References 10 Spectra of Spherical Top Molecules 10.1 General Considerations 10.2 Fundamental Vibrational States 10.3 Overtones and Combinations of F-Modes 10.4 Coriolis Coupling in Overtones and Combinations of F-Modes 10.5 Selection Rules and Intensities 10.5.1 Selection Rules 10.5.2 Intensities of Fundamental Transitions 10.6 Effects of Anharmonicity 10.6.1 Level Shifts and Spherical Splitting 10.6.2 Molecular Symmetry Splitting 10.7 Centrifugal Distortion Effects 10.8 Remarks 10.9 Cubic Symmetry References 11 Floppy Molecules 11.1 Molecular Inversion 11.2 Internal Rotation 11.2.1 Torsional Splitting 11.2.2 Internal Rotation in Symmetric Top Molecules 11.3 Effects of Torsional Coriolis Coupling 11.4 Perturbation Approach for the Degenerate Modes of Ethane-Like Molecules References 12 Hyperfine Structure and the Interaction of Molecular Rotation With Nuclear Electric Quadrupoles 12.1 Reduced Matrix Elements of Q(2) and V(2) 12.2 A Simpler Alternative Method 12.3 Matrix Elements 12.4 Selection Rules for Electric Dipole Transitions 12.5 Hyperfine Structure in an Infrared Spectrum References Appendix A1 Phases of Wavefunctions Appendix A2 Eigenfunctions of Commuting Operators A2.1 Angular Momenta Reference Appendix A3 Coupling of Angular Momenta A3.1 Internal and Rotational Angular Momenta A3.2 Separation of Rotation and Vibration A3.3 Coupling of J with the Nuclear Spin A3.4 Projection Theorem and the Coupling of Molecular Rotation with a Nuclear Spin A3.5 Phases and Clebsch–Gordan Coefficients References Appendix A4 Angular Momentum Matrix Elements A4.1 Rotational Angular Momenta in a Molecule-Fixed Frame Appendix A5 The Full Rotation Group and Irreducible Spherical Tensors A5.1 The Wigner–Eckart Theorem A5.1.1 Phases in the Wigner–Eckart Theorem A5.2 Reduced Matrix Elements in Uncoupled and Coupled Representations A5.3 Products of Tensor Operators A5.4 Contraction of Tensor Operators A5.5 The Full Rotation-Reflection Group References Appendix A6 Direction Cosine Operators A6.1 Direction Cosine Operators as Spherical Tensors A6.2 Second-Rank Direction Cosine Tensor Operators References Appendix A7 Harmonic Oscillators A7.1 Mono-Dimensional Harmonic Oscillator A7.2 Two-Dimensional Isotropic Harmonic Oscillator A7.3 Three-Dimensional Isotropic Harmonic Oscillator References Appendix A8 Vibrational Normal Modes and Coriolis Coefficients A8.1 Vibrational Normal Modes A8.1.1 Internal and symmetrized vibrational coordinates A8.2 Coriolis coefficients References Appendix A9 Contact Transformation and Perturbation Methods A9.1 Contact Transformations A9.1.1 Illustration of the Method A9.2 Van Vleck Perturbation Method References Index