ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Rockburst: mechanisms, monitoring, warning, and mitigation

دانلود کتاب Rockburst: مکانیسم ها، نظارت، هشدار، و کاهش

Rockburst: mechanisms, monitoring, warning, and mitigation

مشخصات کتاب

Rockburst: mechanisms, monitoring, warning, and mitigation

ویرایش:  
 
سری:  
ISBN (شابک) : 9780128050545, 0128050543 
ناشر: Butterworth-Heinemann 
سال نشر: 2018 
تعداد صفحات: 572 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 102 مگابایت 

قیمت کتاب (تومان) : 50,000



کلمات کلیدی مربوط به کتاب Rockburst: مکانیسم ها، نظارت، هشدار، و کاهش: ترکیدن سنگ، مکانیک سنگ.



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Rockburst: mechanisms, monitoring, warning, and mitigation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Rockburst: مکانیسم ها، نظارت، هشدار، و کاهش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Rockburst: مکانیسم ها، نظارت، هشدار، و کاهش

Rockburst: Mechanisms, Monitoring, Warning and Mitigation از مرتبط ترین محققان و متخصصان در سراسر جهان دعوت می کند تا در مورد پدیده مکانیک سنگ مربوط به افزایش تنش و سطوح انرژی در سنگ دست نخورده که توسط حفاری، انفجار، انفجار و سایر فعالیت ها معرفی شده است، بحث کنند. هنگامی که به سطوح انرژی بحرانی می رسد، انفجار سنگ می تواند باعث تلفات انسانی و مواد در محیط های معدن و تونل شود. این کتاب جامع ترین منبع اطلاعاتی به زبان انگلیسی برای پوشش انفجارهای سنگی است. این کتاب که از چهار بخش اصلی تشکیل شده است، به تفصیل مفاهیم نظری مربوط به انفجار سنگ را پوشش می‌دهد و تکنیک‌های مدل‌سازی محاسباتی و تست‌های آزمایشگاهی موجود را معرفی می‌کند. بخش دوم به مطالعات موردی در معدن (زغال سنگ و فلز) و محیط های تونل سازی در سراسر جهان اختصاص دارد. بخش سوم جدیدترین پیشرفت ها در اندازه گیری و نظارت را پوشش می دهد. تمرکز ویژه به تفسیر سیگنال ها و قابلیت اطمینان سیستم ها داده شده است. بخش زیر به هشدار و کاهش خطر از طریق پیشنهاد یک شاخص ارزیابی ریسک و یک شاخص هشدار جامع برای نشان دادن وضعیت تنش سنگ و یک مطالعه موردی موفق می‌پردازد. بخش پایانی کتاب، کاهش از جمله بهترین شیوه‌ها برای حمایت از سنگ را مورد بحث قرار می‌دهد. این کتاب که برای ارائه جامع‌ترین پوشش طراحی شده است، پیش‌زمینه نظری مورد نیاز برای مقابله بهتر با پدیده، توصیه‌های عملی از مطالعات موردی و اقدامات و تکنیک‌های کاهش عملی را برای مهندسان معدن و تونل‌سازی تمرین می‌کند. دانشگاهیان در مکانیک سنگ از این ارجاع کامل به انفجار سنگ، که نحوه تجزیه و تحلیل سیگنال‌های استرس و استفاده مؤثرتر از مدل‌سازی محاسباتی را نشان می‌دهد، قدردانی خواهند کرد.


توضیحاتی درمورد کتاب به خارجی

Rockburst: Mechanisms, Monitoring, Warning and Mitigation invites the most relevant researchers and practitioners worldwide to discuss the rock mechanics phenomenon related to increased stress and energy levels in intact rock introduced by drilling, explosion, blasting and other activities. When critical energy levels are reached, rockbursts can occur causing human and material losses in mining and tunneling environments. This book is the most comprehensive information source in English to cover rockbursts. Comprised of four main parts, the book covers in detail the theoretical concepts related to rockbursts, and introduces the current computational modeling techniques and laboratory tests available. The second part is devoted to case studies in mining (coal and metal) and tunneling environments worldwide. The third part covers the most recent advances in measurement and monitoring. Special focus is given to the interpretation of signals and reliability of systems. The following part addresses warning and risk mitigation through the proposition of a single risk assessment index and a comprehensive warning index to portray the stress status of the rock and a successful case study. The final part of the book discusses mitigation including best practices for distressing and efficiently supporting rock. Designed to provide the most comprehensive coverage, the book will provide practicing mining and tunneling engineers the theoretical background needed to better cope with the phenomenon, practical advice from case studies and practical mitigation actions and techniques. Academics in rock mechanics will appreciate this complete reference to rockburst, which features how to analyze stress signals and use computational modeling more efficiently.



فهرست مطالب

Front
Cover
Half-Title
Rockburst: Mechanisms, Monitoring, Warning, and Mitigation
Copyright
Contents
Contributors
1 - Description and Engineering Phenomenon of Rockbursts
	Description of Rockbursts in Tunnels
		Introduction
		Location of Rockbursts in Tunnels
		Time of Rockbursts Occurring in Tunnels
		Influence of Geological Structures on Rockbursting at Tunnels
			Rockburst With One Stiff Structural Plane or a Set of Stiff Structural Planes
			Rockbursts With Two Stiff Structural Planes With Different Azimuths or Two Sets of Stiff Structural Planes
			Influence of Angle of Geological Structure Planes on Rockbursts
		Differences Between Rockbursts in D&B Tunnels and TBM Tunneling
		References
	Description of Rockbursts in Mines
		What is a Rockburst?
		Description of the Rockburst
		Type of Rockbursts at Mines
			Strain Burst
		Consequences of the Rockburst at Mines
		Rockmass Behavior and Energy Consideration
		References
2 -
Case Histories of Rockburst at Tunnels
	Rockbursts in Tunnels in China
		The General Situation of Rockbursts in Tunnels in China
		Case Histories of Rockburst in Tunnels, China
			Case Example 1
			Case Example 2
			Case Example 3
			Case Example 4
			Case Example 5
		References
	Rock Bursts in Tunnels in the Himalayas-A Case Review
		Introduction
		The Parbati II Hydroelectric Project
			Geology Along the Headrace Tunnel
		Rockburst Events
		Review of Rock Mechanical Properties
		Discussions and Conclusion
		References
3 -
Case Histories of Rockbursts at Metal Mines
	Rockbursts in Metal Mines in China
		Introduction
		Rockburst Condition and Characteristics
			Rockbursts Induced by the Overlying Mining
			Rockburst Induced by Mining Disturbances
			Impact Caving Induced by Structural Plane
		Rockburst Monitoring and Control
		Microseismic Monitoring in the Hongtoushan Copper Mine
			Introduction of the No. 21 Stope and Monitoring Program
			Microseismic Events Distribution
			Distribution of Log(EI) and Displacement
			Rockburst Warning and Control
			Rockburst Control Effectiveness
		References
	Rockbursts in Some Bushveld Platinum Mines
		Introduction
		Characteristics of Seismicity in the Bushveld Complex
			General
			Stress Regime
			Pillar Failure-The General Source Mechanisms
		Pillar Failure Examples
			Case1: Slow, Wide-Area Pillar Run
			Case2: A Brief Pillar Run at Shallow Depth
			Case3: Widespread System Failures
		Other Source Mechanisms
			General
			An Example Case: Slip on Geological Weakness
		Summary
		References
		Further Reading
	Rockbursts in Metal Mines in North America
		Introduction
		Red Lake Mine
			Sill Pillar Destressing
			Ground Support
		Kidd D Mine
			Mining and Rockbursting
			Dealing With the Rockburst Problem
		La Ronde Mine
			Mining and Rockbursting
			Stope Access and Layout Sequencing
			Enhanced Ground Support
			Rockburst Characteristics
			Overall Rockburst Strategy
		Reference
	Rockbursts in the Underground Mines at Kolar Gold Fields, India
		Introduction
		Geological Setting
		Mining Methods
		Seismic Monitoring
		Case Studies of Rockbursts
			Area Rockbursts
			Fractal Character of ARBs
		Other Investigations
			Laboratory Investigations
			In Situ Stress Measurements
		Summary
		References
	Typical Characteristics of Rockburst Ground Motion
		Introduction
		Ground Motion Characteristics to Characterize Rockbursts
		Anaysis of Selected Type I and Type II Ground Motion Records
		Conclusions
		References
		Further Reading
4 -
Case Histories of Rockburst at Coal Mines
	Coal Mines in China: Characteristics and Conditions Mechanism
		Rockburst Characteristics
		Occurrence Conditions of Rockburst
		Mechanism of a Rockburst
	Rockbursts in European Coal Mines
		Coalmines in Europe
		Rockburst in European Coalmines
			Poland
			Mining Induced Seismicity in Germany
			Ostrava-KarvinÁ Coalfield-Czech Republic
			Rockbursts in France
			Russia
			Another Countries
		Conclusion
		References
		Further Reading
5 -
Laboratory Experiment of Rockburst Evolution Mechanism
	Brittleness and Ductility of Rocks
		Rock Brittleness and the Ductility of Hard Rocks Recognized by Triaxial Compression Tests
			The Stress-Strain Curve and Confining Dependence of Rock Brittleness
			The Relation Between Rock Brittleness and Rockburst
		Rock Brittleness and Ductility of Hard Rocks Recognized by True Triaxial Compression Tests
		Dilatancy of Hard Rocks Under True Triaxial Compression Condition
		References
	Rock Failure by Loading and Unloading
		Triaxial Confining Pressure Unloading Test
			Triaxial Unloading Path and its Effects on Inducing Rockburst
			Stress-Strain Curves in Triaxial Confining Pressure Unloading Test
			Unloading Parameter Effects in Triaxial Confining Pressure Unloading Test
				The Effect of Unloading Rate
				The Effect of Unloading Rate of the Initial Damage Degree
		Rock Brittle Failure Process at Biaxial Loading Path With σ3=0MPa
		Energy Release Features and Rockburst Proneness Under True Triaxial Compression Condition
		Brittle Failure of Hard Rocks Under True Triaxial Comparison With σ3 Loading and Unloading
		True Triaxial Testing of Remotely Triggered Rockburst
		References
	Characteristics of Rockbursts in Laboratory Observation
		Introduction
		Material
		Experiment
			Experiment System
			Experiment Procedure
		Result and Discussion
			Experiment Result
			Time-Frequency Characterization
			Discussion
		Summary
		References
		Further Reading
	Physics Experiments on Rockburst in Lab
		Rockburst Study
		Rockburst Experiments in Lab
			Experiments on Strainburst
				Strainburst Testing Machine
				Stress Paths for Instantaneous and Delayed Rockbursts
				Stress Paths for Pillar Bursts
				Experimental Results for Strainburst
			Study on Impact-Induced Burst
				Impact-Induced Rockburst Testing Machine
				Stress Paths for Impact-Induced Bursts
				Results
		Rockburst Criterion
			Study on the Impact-Induced Burst
				Instantaneous Rockburst Criterion
				Delayed Rockburst Criterion
			Impact-Induced Rockburst Criteria
				Physical Model for the Impact-Induced Rockbursts
				Delayed Rockburst Criterion
		Summary
		References
		Further Reading
6 -
Understanding of Rockburst Evolution Mechanism Using In Situ Data
	Understanding Rockburst Evolution Process by Comprehensive In Situ Monitoring in a Deep Tunnel
		Introduction
		Comprehensive In Situ Monitoring Methods for the Rockburst Development Process
			Numerical Method for the Configuration of Monitoring Facilities
			Approach on Direct Observation of Fracture During Rockburst Evolution
			Monitoring of Rockmass Deformation and Elastic Velocity
		Case Study
			Geological Settings
			Configuration and Excavation Method of Test Tunnels
			Configuration of Monitoring Facilities
		Rockburst Evolution Process Based on In Situ Monitoring Results
			Description of the Monitored Field Rockburst
			Fracture Evolution in the Surrounding Rock Mass
			Characteristics of the Evolution of Deformation and Elastic Velocity
		Comparison and Verification With Other Rockbursts
			Rock Mass Fractures From Another Case
			Discussions on Rockburst Mechanism
		Conclusions
		References
	Evolution Mechanisms of Rockbursts in Tunnels Based on In Situ-Monitored Microseismicity
		Methodology
		Evolution Mechanism of Rockburst in TBM Tunnel
			Rockburst Without the Existence of Stiff Structural Planes
			Rockburst With the Existence of Stiff Structural Planes
		Evolution Mechanism of Rockburst in a D&B Tunnel
			Rockburst Without the Existence of Stiff Structural Planes
			Rockburst With the Existence of Stiff Structural Planes
		Summary
		References
	Discussion of the Features of a Shear Rupture Rockburst Mechanism Based Upon a Recently Identified Fan-Head Dynamic Shear R ...
		Introduction
		Features of Rock Failure Governed by the Fan Mechanism
			Conditions of the Fan Mechanism Activation
			Efficiency of the Fan Mechanism
			Low Transient Rock Strength Provided by the Fan Mechanism
		Features of Shear Rupture Rockburst Caused by the Fan Mechanism
			Generation of Shear Ruptures of Extreme Dynamics in Pristine Rock Mass
			Fault Nucleation Away From the Opening Surface
		Summary
		References
	Mechanisms of Rockbursts vs Natural Earthquakes*
		Introduction
		Method
		Case Studies
			Natural Earthquake: West Bohemia/Vogtland Swarm, January 15, 1997
			Seismic Event Induced in Gas Storage Háje Near Príbram, Czech Republic
			Seismic Event Induced in the Cigar Lake Mine, Canada
		Summary
		Acknowledgments
		References
7 - Understanding of Rockburst Evolution Mechanism Using Numerical Modeling
	Numerical Study of the Rockburst Mechanism Using the Elastoplastic Cellular Automaton
		Introduction
		An Introduction of the EPCA
			Mesoscopic Modeling Components
			Macroscopic Modeling Components
			Brittleness Index
			Local Energy Release Rate
			Representation AE
		Illustration Examples
			The Influence of Heterogeneity on the Hard Rock Failure Process
			Study of the Effect of Size on the Failure Behavior of Hard Rock-Pillars
			Study on Brittle and Ductile Transition of Mechanical Behavior in Hard Rock
			Simulation of LERR Evolution of Rockburst in Taipingyi Headrace Tunnel
		Conclusions
		References
	Rockburst Development Process Simulation Using Continuum-Discontinuum Cellular Automaton
		Introduction
		Continuum-Discontinuum Cellular Automaton Method
			Crack Initiation
				Crack Initiation Criterion
				Crack and Structure Tracking
			Crack Opening, Closing, Slipping, and Propagating
				Crack Opening, Closing, and Slipping
				Governing Equation
				Discontinuous Cellular Automaton Model
				Mixed-Crack Propagating Criterion
			Formation of Rock Blocks and Energy Evolution
				Failure Block Forming
				Rock Failure Energy Evolution
		Rockburst Case Study
		Conclusion
		References
	Discontinuous Deformation Analysis
		Introduction
		Strain Energy Change Due to Excavation
		Rockburst Modeling in Discontinuous Rock Masses With DDA
			Restricting the Size of the Monitored Domain
			Kinetic Energy of Rockbursts
			Mitigating Rockburst Hazard Using Sequential Excavation
		Discussion
		Summary and Conclusions
		References
	Numerical Modeling of Ground Motion Near Underground Excavation Boundaries
		Introduction
		Seismic Source Models and Ground Motion Simulation
			Seismic Source Models
				Point Source Model
				Finite Source Model
			Analytical Tools for Ground Motion Simulation
			Numerical Methods for Solving Seismic Wavefield Equations
			Numerical Tools for Ground Motion Simulation
		Influence of Geology, Geometry, and Rock Mass Quality on Ground Motions Near Underground Excavations
			Influence of Wavelength-to-Excavation Span Ratio on Ground Motion
			Influence of Mine Opening and Geology on Wavefield and Ground Motion
				Influence on Wavefields
				Influence on Ground Motion
			Influence of Confinement and Rock Mass Quality on Ground Motion
		Conclusions
		References
		Further Reading
8 - Monitoring Systems in Rockbursts
	Development of Microseismic Monitoring Systems in China
		Introduction
		The SinoSeiSm Monitoring System
		Application of System in the Hongtoushan Copper Mine, China
			Engineering Introduction
			Communication and Monitoring Schemes for the Microseismic System
			Verification of Location Precision of the Microseismic System
			Laws and Characteristics of Microseismic Activities of the Surrounding Rocks Before and After Large Blasting
		Conclusions
		References
	The IMS Seismic Monitoring System
		Introduction
			Objectives of Seismic Monitoring in Mines
			Magnitude
			Frequency Range
			Dynamic Range
		Seismic Sensors
			Comparison of Seismic Sensor Characteristics
			Selecting the Right Sensor for the Application
			Sensor Array Design
		Digital Seismic Monitoring System
			Communications and System Topology
				Data Communication Rates
				Digital Communication Technologies
				Coping With Bandwidth-Constrained Intermittent Communication Networks
				Communications and System Topology
			Time Synchronization
				Synchronization Accuracy Requirements
				Methods of Achieving Time Synchronization
			Preprocessing
				Triggering and Buffering
				Data Prioritization and Messaging
			Central Site: Processing, Database Management, Monitoring, and Control
				Association
				Quick Location/Magnitude: An Early Warning System
				Automatic Processing
				Database Management and Data Dissemination
				Online Monitoring and Control
		Active Seismic Sources
			System Requirements for Active Seismic Sources
		Applications
			Underground Hard Rock Mines
			Caving Mines
			Open Pit
			Storage Caverns: Nuclear Waste, Liquid Petroleum Gas, etc.
			Coal Mines
			Ambient Surface Waves (Tailing Dams, Passive Exploration, etc.)
			Standalone/Temporary Monitoring Systems
			Ambient Seismic Noise
				Stress Changes from Ambient Seismic Noise (SCAN)
				Tailings Dams Monitoring
				Exploration
			Coal Mines: Intrinsically Safe Equipment
		References
		Further Reading
	Monitoring Microseismicity in Canadian Mines
		Introduction
		Seismic Event Location Using 3D VMs
		Clustering Analysis
		Source Parameters
		Conclusions
		References
	Multiparameter and Infrared Monitoring Systems for Real-Time Rockburst Susceptibility Evaluation and Their Applications to  ...
		Introduction
		Multiparameters and Infrared Monitoring Systems
		Experiments on Rock Samples
		Laboratory Experiments on Model Underground Openings
			Sandstone Block of Shizuoka Third Tunnel
			Sandstone Sample From Tarutoge Tunnel
		Applications to Several Tunnels
			Shizuoka Third Tunnel
			Tarutoge Tunnel
		Multiparameter Monitoring Results During July 20-26, 2014
		Multiparameter Monitoring Results During September 20-26, 2014
		AE Responses at the Tunnel Face
		Infrared Monitoring System
			Acknowledgments
		References
		Further Reading
9 -
Microseismic Monitoring Method of the Rockburst Evolution Process
	Monitoring Scope and Principle
		Scope
		Principles of Microseismic Monitoring on the Rockburst Evolution Process
	Selection of Monitoring Equipment
		Choice of Microseismic System
		Choice of Microseismic Sensors
	Necessary Measures for Improving Rockburst Monitoring Quality
		Fast Installation and Retrieval of Sensors
		Dynamic Layout of the Sensor Network
		Arrangement of a Communication Network
		Protecting the Safety and Normal Operation of Devices
	Data Analysis of Near-Field Rockburst Monitoring
	Presentation of Monitoring Results
	Appendix
	References
10 -
Latest Developments on Analysis of DataMonitored
	Neural Networks for Noise Filtering of Microseismicity Monitoring in Tunnels
		Methodology
		Application
			Characteristics of MS Signals in Deep-Buried Tunnels
			Extraction of MS Signals
			Neural Network Model for Identifying Rock Mass Fractures
		Summary
		References
		Further Reading
	An Intelligent Microseismic Source Location Algorithm Using a Hierarchical Strategy
		Introduction
		The Layered PSO Location Method for Microseismic Sources
			Layered Localization Principles for Microseismic Sources
			A Layered PSO Location Method for Microseismic Sources
		Algorithm Performances
			Convergence of the Algorithms
			Correlations of Solutions
		Engineering Case
			Brief Introductions of Pakistan N-J Hydropower Project and Microseismic Monitoring
			Real-Time Microseismicity Monitoring at N-J TBM Tunnels
				Difficulty of Source Location in Tunnel
				Sensors and Their Installation
			Location of the Microseismic Events of Typical Rockbursts
		Discussion of the Velocity Model
		Conclusions
		References
	Velocity Models for Microseismic Source Locations in Tunnels
		Introduction
		Performance Analysis of the Velocity Models
		References
11 -
Assessment of Rockburst Risk
	Single and Comprehensive Index Methods of Rockburst Risk Assessment
		Empirical Criteria of Rockburst Evaluation Based on a Single Index
			Strength-Stress Ratio or Stress-Strength Ratio
			Energy and Brittleness Indices
		Empirical Indices or Evaluation Systems of Multiple Factors of Rockbursts
		Rockburst Vulnerability Index
			Constitution and Configuration and Established Methods for the RVI System
			The Selection of Rockburst Controlling Factors and Their Controlling Effects
				Stress Control Factor, Fs
				Petrophysical Factor, Fr
				Rock System Stiffness Factor, Fm
				Geological Structure Factor, Fg
			Empirical Relationship Between RVI and Rockburst Failure Depth
			Rockburst Case Verification Based on RVI
				Case Example 1
				Case Example 2
		Dynamical Assessment of Rockburst Risk Based on an Empirical Index
			Feasibility Study Phase
			Design and Construction Phase
		References
	Neural Networks for Rockburst Risk Assessment for Deep Tunnels
		Basic Theory of Neural Network
		Database for Rockbursts at Jinping Tunnels
		Building the Neural Network Model for Assessing Rockburst Risk
		Engineering Application
		References
		Further Reading
	Probabilistic Assessment of Mining-Induced Time-Dependent Seismic Hazards
		Formulation of the Problem
		Modeling the Seismic Activity of a Future Zone
		Exceedance Probability of Ground Motion Amplitude
		Modeling Probabilistic Distributions of Zone Seismicity
			Event Rate and Representations of Source Component in PSHA
			Magnitude
			Time Variations of Source Components of Seismic Hazard
			Epicenter Location
		Modeling Conditional Probability of Ground Motion Amplitude
		Example
		References
	Rockburst Prediction Methods and Their Applicability
		Introduction
		Norwegian Rule of Thumb
		Stress Problem Classification
		Uniaxial Compressive and Tensile Strength Approach
		Maximum Tangential Stress and Rock Spalling Strength Approach
		Applicability and Input Requirements
		Conclusion
		References
	Recognition of Rockburst Intensity Using In Situ-Monitored Microseismicity
		Introduction
		A Quantitative Recognition Criterion for Rockburst Intensity
		Two Typical Examples Using the New Rockburst Intensity Quantitative Recognition Criterion
			Rockburst Example I: An Intense Rockburst
			Rockburst Example II: A Moderate Rockburst
		Conclusions
		References
12 -
Warning of Rockburst
	Why Can We Make Some Warning of Rockbursts?
		References
	Fractal Behavior of Microseismicity Associated With Rockbursts in Deep Tunnels
		Introduction
		The Fractal Behavior of Microseismic Energy Associated With Rockbursts
			Calculation Method of Microseismic Energy Fractal Dimensions
			Microseismic Energy Fractal Dimension During the Evolution of Immediate Rockbursts in Deep Hard Rock Tunnel
				Microseismic Energy Fractal Dimension During the Evolution of Immediate Rockbursts
				Microseismic Energy Fractal Dimension During the Evolution of Immediate Rockbursts Affected by Stiff Structur ...
			Microseismic Energy Fractal Character of Immediate Rockbursts in Deep Hard Rock Tunnels
			Analysis of the Microseismic Energy Distribution of Different Intensities and Types of Immediate Rockbursts
		Temporal Fractal Dimensions of Microseismic Events for Immediate Rockbursts
			Calculation of Microseismic Temporal Fractal Dimension
			Microseismic Temporal Fractal Dimension During the Evolution of Immediate Rockbursts in Deep, Hard Rock Tunnel
		Spatial Fractal Dimension of Microseismic Events for Immediate Rockbursts
			Calculation of Microseismic Spatial Fractal Dimension
			Microseismic Spatial Fractal Dimension During the Evolution of Immediate Rockbursts in Deep Hard Rock Tunnel
		Discussion and Conclusions
		References
		Further Reading
	Dynamic and Quantitative Warning of Rockbursts in Tunnels Using the In Situ Monitored Microseismicity
		Methodology
		Rockburst Warning at D&B Tunnels
		Rockburst Warning at TBM Tunnels
		Reference
	Rockburst Predictions by Seismic Monitoring Data
		Introduction
		Physical Basis for Seismicity Analysis
		Rockburst Prediction Principles
			Delineation of Dangerous Areas
				Delineation of Dangerous Areas by the Application of Seismic Events Influence Zones Method
			Popular Characteristics for Rockburst Predictions
				Probability of the Maximum Expected Magnitude and Absolute Maximum Magnitude
				Seismic Activity and Time Intervals Between Seismic Events
				Concentration Criterion
				Slope of Gutenberg-Richter Relationship (b-Value)
				Energy Index
				Cumulative Apparent Volume
			Additional Seismological Methods for Rockburst Prediction
			Combined Consideration of Precursors
		Summary
		References
	Successful Examples of Rockburst Warnings in coal mines, China
		Successful Warning of Rockburst at the Junde Coal Mine
			Production and Geological Conditions of Working Face
			MS and AE Monitoring Systems and Sensors Arrangement
			Process and Description of the Rockburst and Gas Outburst
			MS and AE Warning Results and Analysis
				Evolution of MS Dominant Frequency-Spectrum
				Evolution of AE Energy and Count
				Summary
		Successful Rockburst Warning at the Sanhejian Coal Mine
			Introduction of the 9202 Working Face
			KBD5 Electromagnetic Emission and KZ-1 MS Monitoring System
			Description of the Rockburst Accident
			MS and EME Warning Results and Analysis
			Conclusions
		References
13 -
Avoiding High-Stress Concentrations by Reasonable Excavation Methods
	Optimization of the Shape of the Tunnel Cross Section
	Optimization of the Tunnel Cross-Section Area of One Step of the Excavation
	Optimization of Tunnel Spacing
	Excavation of Approaching Faults
	Reasonably Stopping Excavation of One Working Face When Opposite Excavation of Two Working Faces
	Dynamic Adjustment of Tunnel Advance Rate
	References
14 -
Destressing
	Destress Blasting
		Ore Underground Mining
		Underground Coal Mining
	Destressing Spaces
	Hydrofracturing and Water Infusion
	Evaluation of Effectiveness
		Visual Observation of Deformation of Underground Openings
		Measurement in Rock Mass
		Engineer Approaches for Stress Release Evaluation
	Examples of Implementation
	Destress Blasting in Tunneling
	References
	Further Reading
15 -
Excavation Vulnerability and Selection of Effective Rock Support to Mitigate Rockburst Damage
	Preamble
		Underground Excavation Behavior
			Introduction
				Definition of Rockburst
				Effective Rock Support to Mitigate Rockburst Damage
				General Steps for Selecting Effective Rock Support
			Characterization of Underground Excavation Behavior
				Static Excavation Behavior Modes
					Depth of Failure df
					Bulking of Stress-Fractured Ground
				Dynamic Excavation Behavior Modes
			Vulnerability to Instability of Supported Excavations
				Historical Developments
				Evolution of Vulnerability to Instability Due to Mining
				Measures of Excavation Vulnerability
					Safety Margin
					Design Criteria
				Vulnerability to Shakedown (or FoG)
				Vulnerability to Failure in Stress-Fractured Ground
				Vulnerability to Failure by Strainbursting in Relatively Stiff Loading Environments
				Vulnerability to Failure by Rock Mass Yield (Plasticity)
			Impact of Mining-Induced Stress Changes on Excavation Behavior
				Mining-Enhanced Vulnerability to Shakedown or Falls of Ground
				Mining-Enhanced Vulnerability to Stress Fracturing
				Mining-Enhanced Vulnerability to Strainbursting
					Influence of Geological Structures
					Influence of Rock Support
				Vulnerability Resulting From Excessive Support Deformation
					Bulking of Stress-Fractured Ground
					Plastic Yielding or Squeezing Ground
			Instability Caused by Self-Initiated or Triggered Strainbursts
				Burst Potential and Severity
				Ejection During Strainbursting
				Seismically Triggered Strainbursts
			Instability Caused by Dynamic Disturbance From Remote Seismic Events
				Dynamic Stress Disturbance by Remote Energy Release
					Dynamic Deepening of Depth of Failure
				Dynamic Stress Causing Dynamically Loaded Strainbursts
				Dynamic Shaking Disturbance Causing Falls of Ground
				Remote Dynamic Disturbance Causing Rock Ejection
		Support Selection
			Review of Support Selection Rationale for Static Support Demands
				Static Factor of Safety as Indicator of Vulnerability
					Force Equilibrium
					Energy Equilibrium
					Displacement Equilibrium
				How Does Stress-Fractured Rock Load the Support?
				Self-Supporting Capacity of Reinforced Stress-Fractured Rock Arch
			Support Selection Rationale With Dynamic Support Demands
				Excavation Damage Involving Dynamic Stress Fracturing Near an Excavation
					How is Energy Dissipated in a Reinforced Drift Wall?
					Energy Dissipation From a Strainburst
				Displacement Management During Dynamic Failure Processes
					Managing Excessive Strainburst Energy Release
			Deformation-Based Support Design
				Deformable Support Systems for Stress-Fractured Ground
				Deformation-Based Support Selection
				Support Functions in Stress-Fractured Ground
				Estimation of Bulking Deformation for Deformation-Based Support Selection
				Support Selection in Strainburst-Prone Ground
	References
	Further Reading
		Excavation damage and rockburst types
		Rock mass damage mechanisms
16 -
Successful Examples for Mitigating Rockbursts
	Successful Examples for Mitigating Rockbursts in Jinping II Tunnels China
		References
	Successful Examples for Mitigating Rockburst in CJPL-II Tunnels China
		References
	Successful Examples for Mitigating Rockbursts in Tunnels Pakistan
		Case1: Mitigation of Intense Rockburst Risk
		Case2: Moderate Rockburst Risk Mitigation
		References
17 -
Mitigating Rockburst Effects for Civil Engineering Infrastructure and Buildings
	Introduction
	Elastic Design Response Spectrum
	Design Peak Ground Acceleration
	Inelastic Design Response Spectrum
	Summary of the Methodology
	Engineering Example One
	Engineering Example Two
	Final Remarks
	References
	Further Reading
18 -
Conclusions and Future Developments
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
Back Cover




نظرات کاربران