دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9780470484173, 9780470634417 ناشر: Wiley-IEEE Press سال نشر: 2010 تعداد صفحات: 316 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Robotic Microassembly به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریز مونتاژ رباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مدلها و روشهای جدید و نوظهور توسعهیافته در سرتاسر جهان برای ریز مونتاژ رباتیک را ارائه و تجزیه و تحلیل میکند، راهی جدید و نوآورانه برای تولید بهتر میکروسیستم ها با کاوش در همه چیز، از فیزیک ریز دستکاری گرفته تا میکرومونتینگ گرفته تا میکروهندلینگ، اولین نمای کلی و بررسی کامل این زمینه به سرعت در حال رشد را ارائه می دهد. ریز مونتاژ رباتیک به سه بخش تقسیم می شود:
قسمت اول: مدل سازی دنیای میکرو
قسمت دوم: استراتژی های مدیریت
قسمت سوم: رباتیک و ریز مونتاژ
این سه بخش با هم دارای هشت فصل هستند که توسط هشت نویسنده مختلف ارائه شده است. نویسندگان، کارشناسان شناخته شده بین المللی در زمینه ریز مونتاژ رباتیک، نماینده آزمایشگاه های تحقیقاتی در آسیا، اروپا و آمریکای شمالی هستند. در نتیجه، خوانندگان دیدگاه قابل توجهی در مورد رویکردهای مختلف به ریز مونتاژ روباتیک از سراسر جهان دریافت می کنند. مثالهای ارائهشده در سرتاسر فصلها به خوانندگان کمک میکند تا درک بهتری از نحوه عملکرد این رویکردهای مختلف در عمل داشته باشند. مراجع در پایان هر فصل به ادبیات اولیه برای بررسی بیشتر موضوعات فردی منتهی می شود.
ریز مونتاژ روباتیک روشی جدید و بهبود یافته برای ساخت سیستم
های میکروالکترو مکانیکی با کارایی بالا (MEMS) ارائه می دهد.
بنابراین، هر حرفه ای یا دانشجویی که در زمینه میکرورباتیک،
میکرو مکاترونیک، خود مونتاژ یا MEMS فعالیت می کند، ایده ها و
روش های جدیدی را در این کتاب پیدا می کند که زمینه را برای
رویکردهای جدید برای طراحی و ساخت نسل بعدی MEMS و ریزمحصولات
فراهم می کند. br>فصل 1 مدلسازی دنیای ریز در محیطهای خلاء
و گازی (صفحات 1-54): پیر لامبرت و استفان رگنیر
فصل 2 مدلسازی دنیای ریز: تأثیر مایع و ناهمواری (صفحات
55-105): پیر لامبرت و استفان
فصل 3 نمایی یکپارچه از ریزهندلینگ رباتیک و خود مونتاژ (صفحات
107-143): کوان ژو و ویکو ساریولا
فصل 4 به سوی ریزدستکاری دقیق (صفحات 145-188): ملانی دافلون و
ریموند کلاول <5> استراتژیهای ریزهندلینگ و ریز مونتاژ
در محیط غوطهور (صفحات 189–224): مایکل گوتیه
فصل 6 ریز مونتاژ رباتیک ساختارهای MEMS سهبعدی (صفحههای
225–252): نیکولای دچف
فصل 7 ?ME2 بازدهی بالا -278): دن او پی opa and Harry E.
Stephanou
فصل 8 طراحی یک ماشین ریز مونتاژ رومیزی و کاربرد صنعتی آن در
دستکاری توپ ریز لحیم کاری (صفحات 279-297): آکیهیرو ماتسوموتو،
کونیو یوشیدا و یوسوکه مائدا
This book presents and analyzes new and emerging models and methods developed around the world for robotic microassembly, a new and innovative way to produce better microsystems. By exploring everything from the physics of micromanipulation to microassembly to microhandling, it provides the first complete overview and review of this rapidly growing field. Robotic Microassembly is divided into three parts:
Part One: Modeling of the Microworld
Part Two: Handling Strategies
Part Three: Robotic and Microassembly
Together, these three parts feature eight chapters contributed by eight different authors. The authors, internationally recognized experts in the field of robotic microassembly, represent research laboratories in Asia, Europe, and North America. As a result, readers get a remarkable perspective on different approaches to robotic microassembly from around the world. Examples provided throughout the chapters help readers better understand how these different approaches work in practice. References at the end of each chapter lead to the primary literature for further investigation of individual topics.
Robotic microassembly offers a new, improved way to
manufacture high-performance microelectro-mechanical systems
(MEMS). Therefore, any professional or student involved in
microrobotics, micromechatronics, self-assembly or MEMS will
find plenty of novel ideas and methods in this book that set
the stage for new approaches to design and build the next
generation of MEMS and microproducts.Content:
Chapter 1 Microworld Modeling in Vacuum and Gaseous
Environments (pages 1–54): Pierre Lambert and Stephane
Regnier
Chapter 2 Microworld Modeling: Impact of Liquid and Roughness
(pages 55–105): Pierre Lambert and Stephane Regnier
Chapter 3 Unified View of Robotic Microhandling and
Self?Assembly (pages 107–143): Quan Zhou and Veikko
Sariola
Chapter 4 Toward a Precise Micromanipulation (pages 145–188):
Melanie Dafflon and Reymond Clavel
Chapter 5 Microhandling Strategies and Microassembly in
Submerged Medium (pages 189–224): Michael Gauthier
Chapter 6 Robotic Microassembly of 3D MEMS Structures (pages
225–252): Nikolai Dechev
Chapter 7 High?Yield Automated MEMS Assembly (pages 253–278):
Dan O. Popa and Harry E. Stephanou
Chapter 8 Design of a Desktop Microassembly Machine and its
Industrial Application to Microsolder Ball Manipulation
(pages 279–297): Akihiro Matsumoto, Kunio Yoshida and Yusuke
Maeda
ROBOTIC MICROASSEMBLY......Page 4
CONTENTS......Page 8
FOREWORD......Page 14
PREFACE......Page 16
CONTRIBUTORS......Page 20
I MODELING OF THE MICROWORLD......Page 22
1.1.1 Introduction on Microworld Modeling......Page 24
1.1.2 Microworld Modeling for Van der Waals Forces and Contact Mechanics......Page 26
1.2.1 Van der Waals Forces......Page 27
1.2.2 Capillary Forces......Page 38
1.2.3 Elastic Contact Mechanics......Page 55
1.3.1 Capillary Condensation......Page 57
1.3.2 Electrostatic Forces......Page 60
References......Page 70
2.2.1 Classical Models......Page 76
2.2.2 Sphere–Sphere and Sphere–Plane Interactions......Page 81
2.2.3 Theoretical Comparison Between Air and Liquid......Page 89
2.2.4 Impact of Hydrodynamic Forces on Microobject Behavior......Page 91
2.3.1 AFM-Based Measurements......Page 95
2.3.2 Experiments on Adhesion Forces......Page 97
2.3.3 Various Phenomena......Page 104
2.4.1 Surface Topography Measurements......Page 105
2.4.2 Statistical Parameters......Page 106
2.4.3 Models of Surface Roughness......Page 109
2.4.4 Fractal Parameters......Page 110
2.4.5 Extracting the Fractal Character of Surfaces......Page 114
2.4.6 Conclusion......Page 122
References......Page 123
II HANDLING STRATEGIES......Page 128
3.1 Background......Page 130
3.2.1 Microhandling System......Page 132
3.2.2 Microhandling Strategies......Page 133
3.3 Self-Assembly......Page 136
3.3.1 Working Principle......Page 137
3.3.2 Self-Assembly Strategies......Page 138
3.4.1 Feeding......Page 140
3.4.2 Positioning......Page 141
3.4.3 Releasing, Alignment, and Fixing......Page 142
3.4.4 Environment......Page 143
3.4.5 Surface Properties......Page 144
3.4.6 External Disturbance and Excitation......Page 146
3.4.7 Summary and Discussion......Page 147
3.5 Hybrid Microhandling......Page 148
3.5.1 Case Study: Hybrid Microhandling Combining Droplet Self-Alignment and Robotic Microhandling......Page 149
3.5.2 Analysis of Droplet Self-Alignment-Based Hybrid Microhandling......Page 157
3.6 Conclusion......Page 159
References......Page 160
4.2 Handling Principles and Strategies Adapted to the Microworld......Page 166
4.2.2 Adhesion Ratio at Interfaces......Page 167
4.2.3 Adhesion-Based Micromanipulation......Page 171
4.2.4 Grasping—A Special Case of Adhesion Handling......Page 180
4.2.5 Case of an Additional Force Acting at the Interface......Page 183
4.2.6 Case of an External Force Acting on the Component......Page 184
4.3 Micromanipulation Setup......Page 185
4.4 Experimentations......Page 187
4.4.1 Microtweezer Family......Page 189
4.4.2 Inertial Microgripper Based on Adhesion......Page 194
4.4.3 Vacuum Nozzle Assisted by Vibration......Page 198
4.4.4 Thermodynamic Microgripper......Page 201
4.5 Conclusion......Page 205
References......Page 206
5.1 Introduction......Page 210
5.2.1 Principle of Dielectrophoresis......Page 211
5.2.2 Application of the Dielectrophoresis in Micromanipulation......Page 214
5.3.1 Ice Grippers in the Air......Page 217
5.4 Chemical Control of the Release in Submerged Handling......Page 223
5.4.1 Chemical Functionalization......Page 224
5.4.2 Experimental Force Measurements......Page 225
5.4.3 Modeling of Surface Charges......Page 231
5.4.4 Application of Functionalized Surfaces in Micromanipulation......Page 232
5.5.1 Handling and Assembly Strategy......Page 233
5.5.2 Robotic Microassembly Device......Page 235
5.5.3 First Object Positioning......Page 237
5.5.4 Experimental Microassembly......Page 238
5.5.5 Insertion......Page 239
5.6 Conclusion......Page 242
References......Page 243
III ROBOTIC AND MICROASSEMBLY......Page 246
6.1 Introduction......Page 248
6.2.3 Microassembly versus Micromanipulation......Page 249
6.2.5 Interface Between Microassembly Subsystems......Page 250
6.3 Robotic Micromanipulator......Page 251
6.4.1 Bonding a Microgripper to the Probe Pin of the RM......Page 253
6.6 Grasping Interface (Interface Feature)......Page 260
6.7 PMKIL Microassembly Process......Page 262
6.7.1 Grasping a Micropart......Page 263
6.7.2 Removing the Micropart from Chip......Page 264
6.7.3 Translating and Rotating the Micropart......Page 265
6.7.4 Joining Microparts to Other Microparts......Page 266
6.8 Experimental Results and Discussion......Page 268
6.9 Conclusion......Page 271
References......Page 272
7.1.1 Automated Microassembly......Page 274
7.1.3 Focus of This Chapter......Page 275
7.2 General Guidelines for 2.5D Microassembly......Page 276
7.2.2 Fixtures and Micropart Transfer......Page 278
7.2.3 Precision Robotic Work Cell Design......Page 279
7.2.4 High-Yield Assembly Condition (HYAC)......Page 280
7.3.1 Design Principles......Page 281
7.3.2 Example of Microsnap-Fastener Design......Page 282
7.3.3 Snap Arm Optimization Using Insertion Simulation......Page 284
7.3.4 Experimental Validation of Insertion Force......Page 286
7.4.1 Kinematics of Assembly Cell......Page 287
7.4.2 Automation in the Assembly Cell......Page 289
7.5 High-Yield Microassembly......Page 292
7.5.1 High-Yield Assembly......Page 294
7.5.2 Repeated Assemblies......Page 295
References......Page 297
8.1 Introduction......Page 300
8.2.1 Design Considerations......Page 301
8.2.2 Vision Measurement Subsystem......Page 303
8.2.3 Force Control......Page 304
8.3.1 Manipulation Issue of Microsolder Balls......Page 306
8.3.2 Heating Issues of Reflow Soldering......Page 310
8.4.2 Verification of Vision Measurement......Page 312
8.4.3 Verification of Mechanical Structures......Page 314
8.5 Conclusion......Page 316
References......Page 318
INDEX......Page 320