دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [6 ed.]
نویسندگان: Robert E. Farrell Jr.
سری:
ISBN (شابک) : 0323902219, 9780323902212
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 960
[962]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب RNA Methodologies: A Laboratory Guide for Isolation and Characterization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای RNA: راهنمای آزمایشگاهی برای جداسازی و خصوصیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای RNA: راهنمای آزمایشگاهی برای جداسازی و مشخصهسازی، ویرایش ششم، بهروزترین تکنیکهای آزمایشگاهی اسید ریبونوکلئیک را برای دانشمندان با تجربه و دانشجویان فارغالتحصیل ارائه میکند. این نسخه حاوی مطالب جدیدی در مورد توالی یابی RNA، هیبریداسیون RNA در محل، RNA های غیر کد کننده، زیست شناسی RNA محاسباتی، رونویسی و بیوانفورماتیک، همراه با آخرین پیشرفت ها در روش ها و پروتکل ها در زمینه بررسی RNA است. دکتر فارل به عنوان یک رهبر در این زمینه، دانش زیادی را در مورد موضوع زیست شناسی RNA ارائه می دهد و در عین حال نکات مفید و تکنیک های عیب یابی را از تجربه شخصی خود در این زمینه به خوانندگان ارائه می دهد. این کتاب دانش و تکنیک های ضروری برای استفاده در هنگام کار با RNA را برای پزشک باتجربه ارائه می دهد، در حالی که به مبتدیان در درک کامل این شاخه مهم زیست شناسی مولکولی کمک می کند. ارائه جدیدترین اطلاعات مربوط به تمام جنبه های کار با RNA، ارائه یک درک جامع از این زمینه پیشرو در زیست شناسی مولکولی. از اطلاعات اولیه در مورد تکنیک های RNA تا پروتکل های عمیق برای کاربردهای خاص می سازد. مواد جدید در کاربردهای بالینی و نوآوریهای RNA، از جمله درمانهای RNA و واکسنهای RNA، با ارتباط خاص با ویروس کرونا، شامل آخرین پیشرفتها در رونویسی و بیوانفورماتیک، با مواد جدید در زیستشناسی RNA محاسباتی، تجزیه و تحلیل RNA CHiP، زیستشناسی آپتامر و اپی ژنتیک RNA است.
RNA Methodologies: A Laboratory Guide for Isolation and Characterization, Sixth Edition provides the most up-to-date ribonucleic acid lab techniques for seasoned scientists and graduate students alike. This edition features new material on RNA sequencing, RNA in Situ Hybridization, non-coding RNAs, computational RNA biology, transcriptomes and bioinformatics, along with the latest advances in methods and protocols across the field of RNA investigation. As a leader in the field, Dr. Farrell provides a wealth of knowledge on the topic of RNA biology while also giving readers helpful hints and troubleshooting techniques from his own personal experience in this subject area. This book presents the essential knowledge and techniques to use when working with RNA for the experienced practitioner, while also aiding the beginner in fully understanding this important branch of molecular biology. Presents the latest information covering all aspects of working with RNA, delivering a holistic understanding of this leading field in molecular biology Builds from basic information on RNA techniques to in-depth protocols for specific applications Features new chapters on RNA sequencing and RNA in situ hybridization Includes new material on RNA clinical applications and innovations, including RNA therapeutics and RNA vaccines, with particular relevance to coronavirus Comprises the latest developments in transcriptomes and bioinformatics, with new material on computational RNA biology, RNA CHiP analysis, aptamer biology and RNA epigenetics
Front Cover RNA Methodologies Copyright Page Dedication Contents Preface 1 RNA and the cellular biochemistry revisited Why study ribonucleic acid? What is ribonucleic acid? Polynucleotide synthesis Types of ribonucleic acid Transcription and the central dogma Promoters, transcription factors, and regulatory elements Gene and genome organization affect transcription Ribonucleic acid polymerases and the products of transcription Hallmarks of a typical messenger ribonucleic acid 5′ Cap 5′ Untranslated region (leader sequence) Coding region 3′ Untranslated region (trailer sequence) Poly(A) tail Organellar messenger ribonucleic acids Messenger ribonucleic acid—stability and turnover Bicistronic messenger ribonucleic acids Prokaryotic messenger ribonucleic acids Messenger ribonucleic acid sequence and structure affect translation Alternative splicing of messenger ribonucleic acid from a single genetic locus Levels of gene regulation References Further reading 2 Creating a ribonuclease-free environment Rationale Elimination of resilient ribonucleases Latent RNase contamination issues Types of ribonuclease inhibitors Specific inhibitors RNasin Vanadyl ribonucleoside complexes (VDR; VRC) Nonspecific inhibitors Preparation of equipment and reagents UV light Sterile water options Hydrogen peroxide NaOH and sodium dodecyl sulfate Other compounds used to control nuclease activity Polyvinylsulfonic acid Guanidinium salts Sodium dodecyl sulfate N-Laurylsarcosine Phenol:chloroform:isoamyl alcohol 8-Hydroxyquinoline Cesium salts Proteinase K RNAlater Protocol: synthesis of vanadyl ribonucleoside complexes References Further reading 3 Stringency: conditions that influence nucleic acid structure Rationale Types of double-stranded molecules Importance of controlling stringency Effect of salt on stringency Effect of pH on stringency Effect of temperature on stringency Effect of formamide on stringency Effect of urea on stringency References Further reading 4 RNA isolation strategies Rationale Goals in the purification of ribonucleic acid The word on kits Silica technology Isolation of cytoplasmic RNA on a silica column Affinity matrices Lysis buffer formulations Gentle lysis buffers Protocol: isolation of cytoplasmic RNA by gentle hypotonic lysis In advance: preparation of extraction buffer RNA isolation Chaotropic lysis buffers Isolation of RNA with guanidinium buffers Guanidinium–acid–phenol extraction techniques Protocol: guanidinium–acid–phenol extraction Density gradient centrifugation Cesium chloride Protocol: cesium chloride gradients Cesium trifluoracetate Protocol: cesium trifluoroacetate gradients Advance preparation of cesium trifluoroacetate Isolation of RNA and DNA from the same source Protocol: simultaneous isolation of RNA and DNA Recovery of RNA Recovery of DNA Other methods Protocol: rapid isolation of RNA with SDS and potassium acetate reagents Protocol: isolation of prokaryotic RNA Protocol: isolation of RNA from yeast RNA isolation from fluid matrices Short- and long-term storage of purified RNA References Further reading 5 Isolation of polyadenylated RNA Rationale Polyadenylation Selection of polyadenylated molecules: how it works The poly(A) caveat cDNA synthesis considerations Assay sensitivity considerations Magnetic bead technology for poly(A)+ purification Oligo(dT) affinity chromatography Protocol: noncolumn poly(A)+ RNA purification References Further reading 6 The truth about tissues Rationale Tissue culture or tissue? Advantages of cell culture Advantages of tissue samples Homogenization methods Motorized homogenizers Dounce homogenization BeadBeater homogenization RNA isolation strategies for various organs and tissues Fresh tissue Frozen tissue Fixed tissue Protocol: LiCl–urea method for RNA isolation from tissue Protocol: RNA isolation from lipid-enriched tissue Purification of polysome- and protein-engaged mRNA Protocol: isolation of polysomal mRNA Collecting samples in the field RNA “clean-up” methods Troubleshooting RNA isolation from tissue References Further reading 7 Going green: RNA and the molecular biology of plants Rationale RNA isolation and the peculiarities of plants Types of RNA produced in plant cells Protocol: RNA isolation from leaf Protocol: RNA isolation from bark Protocol: RNA isolation from fruit Protocol: RNA isolation from plant tissue with hot borate Strategies for RNA isolation from other plant tissues Troubleshooting RNA isolation from plant tissue References Further reading 8 Quality control for RNA preparations Rationale Quality control technique 1: ultraviolet spectrophotometry and absorption ratios Determination of nucleic acid concentration Determination of nucleic acid purity Nonspectrophotometric methods Quality control technique 2: electrophoretic profiling of RNA Protocol: nondenaturing agarose electrophoresis Quality control technique 3: RNA integrity number Quality control technique 4: ultraviolet shadowing Protocol: ultraviolet shadowing Quality control technique 5: sample capacity to support RT-PCR Quality control technique 6: sample capacity to support in vitro translation References Further reading 9 cDNA: a permanent biochemical record of the cell Rationale cDNA synthesis—an overview First-strand considerations Reverse transcriptase options Second-strand considerations PCR-based methods Legacy methods Protocol: first-strand cDNA synthesis Assessing cDNA synthesis efficiency Cloning cDNA Ligation considerations Enzymes used for ligation Applications References Further reading 10 RT-PCR: a science and an art form Rationale PCR—an overview RT-PCR—general approach PCR carryover prevention Laboratory design Procedural methods Aerosol-resistant tips Uracil-N-glycosylase Primer design General guidelines Tm considerations Estimating Tm Precision Tm calculations ΔG considerations Multiplex primer design Optimization procedures Thermostable polymerases Positive controls Negative controls Hot-start PCR Locked nucleic acid Touchdown PCR Internal controls The word on transcription controls Analysis of PCR products RT-PCR quality control points Non-PCR methods for confirming PCR-derived data Related techniques 5′ RACE PCR 5′ RLM-RACE 3′ RACE PCR Nested PCR Long-range PCR Single-cell PCR Splinkerette PCR The hunt for alternative transcription start sites Protocol: first-strand cDNA synthesis Protocol: PCR amplification of cDNA Cloning PCR products Protocol: A-tailing of blunt-end PCR products Protocol: TA cloning ligation reaction TOPO cloning Other amplification procedures Linear RNA amplification (Eberwine process) Strand displacement amplification Nucleic acid sequence-based amplification Rolling circle amplification Ligase chain reaction LAMP assay References Further reading 11 Quantitative PCR techniques Rationale Sensitivity index Quantitative approaches The MIQE guidelines Real-time PCR Real-time PCR platforms SYBR Green assay TaqMan assay Molecular beacons Scorpions Melting curve analysis Digital PCR Internal controls Exogenous controls Control reaction formats Negative control considerations PCR arrays Competitive PCR: key considerations Competitive PCR: major steps involved Alternative approach: nonreal-time competitive PCR Protocol: competitive PCR Synthesis of nonhomologous competitor Synthesis of first-strand cDNA Primary amplification Secondary amplification Image analysis considerations Troubleshooting quantitative PCR techniques References Further reading 12 miRNA and other noncoding RNAs Rationale Overview of noncoding RNAs sncRNA lncRNA lincRNA Y RNA circRNA miRNA structural and functional characteristics miRNA biogenesis miRNA profiling miRNA as key regulator of gene expression References Further reading 13 RNA interference and gene editing Rationale Essential RNAi terminology RNA interference—how it works Endogenous silencing pathways miRNA Exogenous silencing strategies siRNA approach shRNA approach siRNA delivery methods into mammalian cells Effective design of siRNAs RNAi and alternative transcript splicing In vitro and in vivo issues RNAi validation RT-PCR approaches Northern analysis Western analysis and other protein methods RNAi applications CRISPR-Cas9 and gene editing References Further reading 14 Electrophoresis of RNA Rationale Normalization of samples by nucleic acid concentration Direct measurement of poly(A) content Protocol: poly(A) normalization with a poly(T) probe Sample preparation Prehybridization—option 1 Prehybridization—option 2 Synthesis of poly(T) probe Hybridization Posthybridization washes Intramolecular base-pairing mandates RNA denaturation Formaldehyde denaturation Protocol: formaldehyde denaturing gels Urea denaturation Protocol: urea denaturation Glyoxal/dimethyl sulfoxide denaturation Protocol: glyoxalation and electrophoresis of RNA Gel and sample preparation Running RNA on nondenaturing gels Proper use of molecular weight standards Ribosomal RNA Gel staining options Ethidium bromide SYBR Green SYBR Gold SYBR Safe GelStar Silver staining Acridine orange Methylene blue Safety considerations and equipment maintenance A few tips for running agarose gels for the first time References Further reading 15 Photodocumentation and image analysis Rationale Safety first Digital image analysis Image enhancement Filtration Image formats Practical considerations Biomolecular imagers Traditional methods of photodocumentation Camera settings Inherent limitations of photographic and X-ray films Tips for optimizing electrophoretograms Further reading 16 Northern analysis Rationale Choice of blotting membrane Nylon Nitrocellulose Polyvinylidene difluoride Handling and membrane preparation Northern transfer techniques Capillary transfer TurboBlotter Vacuum blotting Electroblotting Alkaline blotting Protocol: RNA transfer by passive capillary diffusion Protocol: TurboBlotter downward transfer of RNA Immobilization techniques Baking Crosslinking by UV irradiation Protocol: UV crosslinking RNA to nylon filters Postfixation handling of blotting membranes Reverse Northern analysis References Further reading 17 Nucleic acid probe technology Rationale Factors influencing hybridization kinetics and duplex stability Tm considerations Ionic strength pH Probe length Probe concentration G+C content Mismatching Probe complexity Viscosity Formamide Urea DNA probe synthesis Polymerase chain reaction Random priming Nick translation 5′ End-labeling of DNA 3′ End-labeling of DNA Sense and antisense RNA probe synthesis In vitro transcription 5′ End-labeling of RNA 3′ End-labeling of RNA Selection of labeling system The ubiquitous dyes Cy3 and Cy5 Popular nonisotopic platforms Direct enzyme labeling Biotin Digoxigenin Fluorescein Isotope labeling Probe purification and storage Mixed phase hybridization: Northern and Southern blots Prehybridization: filter preparation Protocol: probe hybridization Principles of detection Phosphorimaging and digital detection systems Nonisotopic procedures Detection by chemiluminescence Chromogenic detection procedures Autoradiography considerations Handling of filter membranes X-ray film Safelight Exposure time Intensifying screens Preflashing film Type of cassette Processing X-ray films Autoradiography: suggested protocol Protocol: generic method for probe removal References Further reading 18 Quantification of specific mRNAs by nuclease protection Rationale Basic approach Probe selection Optimization suggestions Potential difficulties Protocol: transcript quantification by S1 analysis Protocol: transcript quantification by RNase protection Troubleshooting References Further reading 19 Analysis of nuclear RNA Rationale Transcription rate assays Relationship to the study of steady-state RNA Nuclear run-off versus nuclear run-on assay Protocol: nuclear run-on assay Harvesting of cells and preparation of nuclei Alternative protocol for preparation of nuclei from cell culture Alternative protocol for preparation of nuclei from whole tissue Labeling and recovery of transcripts Preparation of target DNA Preparation of RNA for hybridization Posthybridization washes and detection Protocol: alternative procedure for nuclear run-on assay Protocol: nuclease protection–pulse label transcription assay Distinguishing among the activities of RNA polymerases Extraction of nuclear RNA for steady-state analysis Protocol: direct isolation of nuclear RNA Protocol: preparation of nuclear RNA from cells enriched in ribonuclease Troubleshooting nuclear RNA analysis References Further reading 20 RNA in situ hybridization Rationale Technical considerations Sample preparation Fresh frozen samples Fixed, paraffin-embedded samples Hybridization and detection procedures Positive and negative control considerations Protocol: preparation of fresh frozen brain tissue for in situ hybridization Protocol: RNA in situ hybridization for zebrafish embryos Protocol: RNA in situ hybridization whole mount for arachnid embryos Spatial transcriptomics In situ hybridization tips for success References Further reading 21 Array analysis of gene expression Rationale What is a microarray? What is a heat map? What microarrays can do What microarrays cannot do Major steps in microarray analysis Reference RNA What is a macroarray? Applications References Further reading 22 Subtractive and nonsubtractive methods for the analysis of gene expression Rationale Essential issues Subtractive methods Suppression subtractive hybridization Troubleshooting Nonsubtractive methods mRNA differential display Troubleshooting References Further reading 23 Transcriptomes and bioinformatics Rationale Essential vocabulary Transcriptomes and transcriptomics The epitranscriptome (epigenetics of RNA) RNA–chromatin, RNA–RNA, and RNA–protein interactions Aptamer biology Bioinformatics Search for genes—have a BLAST! References Further reading 24 RNA-seq: the premier transcriptomics tool Rationale Essential vocabulary Overview of RNA-seq RNA-seq workflow RNA isolation and quality control RNA enrichment RNA fragmentation cDNA synthesis Library amplification Next-generation sequencing RNA-seq data analysis RNA-seq variations CaptureSeq DropSeq CEL-Seq TIF-seq Global run-on sequencing cP-RNA-seq References Further reading 25 RNA biomarker discovery and validation Rationale Biomarkers defined Characteristics of useful biomarkers miRNA biomarkers Circulating RNA Identification of biomarkers for research and diagnostic applications DNA approaches RNA approaches Protein approaches Metabolomics approaches Biomarker issues and shortcomings References Further reading 26 Functional genomics strategies Rationale Functional genomics defined Importance of functional genomics approaches Commonly used functional genomics approaches Relationship of functional genomics approaches to classical molecular biology References Further reading 27 A few RNA success stories Nucleic acids as pharmaceuticals RNA vaccines and therapeutics RNA biobanking RNA reprogramming Trans-splicing: mRNA repair Other RNA innovations A typical experiment? Sensitivity issues What to do next Where to turn for help References Further reading Epilogue A few pearls of wisdom Appendix A Maintaining complete and accurate records Appendix B Converting mass to moles Scenario 1 Scenario 2 Scenario 3 Scenario 4 Appendix C Removal of DNA from an RNA sample Protocol: digestion of DNA Appendix D Removal of RNA from a DNA sample Protocol: removal of DNase activity from homemade RNase stock solutions Protocol: digestion of RNA Appendix E Electrophoresis: principles, parameters, and safety Theoretical considerations Agarose gel electrophoresis Polyacrylamide gel electrophoresis Molecular size range of sample Nucleic acid conformation Applied voltage Ethidium bromide SYBR dye family Base composition and temperature Field direction Types of gel boxes Safety considerations in electrophoresis Maintenance of electrophoresis equipment References Appendix F Disposal of ethidium bromide and SYBR Green solutions Protocol 1 Ancillary protocol Protocol 2 Protocol 3 Protocol 4 References Appendix G Deionization of formamide, formaldehyde, and glyoxal Appendix H Silanizing centrifuge tubes and glassware Protocol Appendix I Centrifugation as a mainstream tool for the molecular biologist Types of centrifuges Rotors Applications Differential centrifugation Density gradient centrifugation–sedimentation velocity Density gradient centrifugation–isopycnic technique References Appendix J Dot blot analysis Advantages and disadvantages Appropriate positive and negative controls Limitations of the data Protocol: RNA dot blots Protocol: DNA dot blots References Further reading Appendix K Useful stock solutions for the molecular biologist NOTES Appendix L Genomes and proteomes Genomes and genomics Proteomes and proteomics References Further reading Appendix M Common SI prefixes Appendix N Common abbreviations Appendix O Select suppliers of equipment, reagents, and services Appendix P Trademark citations Glossary Index Back Cover