دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Loutfy H. Madkour
سری: Nanotechnology for Drugs, Vaccines and Smart Delivery Systems
ISBN (شابک) : 1032135166, 9781032135168
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 423
[424]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب RNA Delivery Function for Anticancer Therapeutics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عملکرد تحویل RNA برای درمان های ضد سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری بر وضعیت فعلی ترجمه درمانهای سرطان RNAi در کلینیک، شرح مختصری از موانع بیولوژیکی در تحویل دارو، و نقش تصویربرداری در جنبههای مسیر تجویز، گردش خون سیستمیک، و موانع سلولی برای ترجمه بالینی درمان های سرطان RNAi، و با محتوای جزئی برای بحث در مورد نگرانی های ایمنی. سپس بر تحویل هدایتشده توسط تصویربرداری از درمانهای RNAi در توسعه پیش بالینی، از جمله اصول اساسی روشهای مختلف تصویربرداری، و مزایا و محدودیتهای آنها برای تصویربرداری بیولوژیکی تمرکز میکند. با افزایش تعداد درمانهای RNAi که وارد کلینیک میشوند، روشهای مختلف تصویربرداری نقش مهمی در تسهیل ترجمه درمانهای سرطان RNAi از نیمکت به بالین خواهند داشت. تکنیک RNAi به ابزاری قدرتمند برای تحقیقات پایه برای از بین بردن انتخابی بیان ژن در شرایط in vitro و in vivo تبدیل شده است. جوامع علمی و صنعتی ما شروع به توسعه درمانهای RNAi بهعنوان دسته بعدی از داروها برای درمان انواع اختلالات ژنتیکی، مانند سرطان و سایر بیماریهایی کردهاند که بهویژه پرداختن به آنها با استراتژیهای درمانی فعلی دشوار است.
ویژگیهای کلیدی
This book presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. It then focuses on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside. RNAi technique has become a powerful tool for basic research to selectively knock down gene expression in vitro and in vivo. Our scientific and industrial communities have started to develop RNAi therapeutics as the next class of drugs for treating a variety of genetic disorders, such as cancer and other diseases that are particularly hard to address with current treatment strategies.
Key Features
Cover Half Title Series Page Title Page Copyright Page Contents Preface Author Chapter 1: Cancer Epigenetic Mechanisms: DNA Methylomes, Histone Codes, and MiRNAs 1.1. Background 1.2. Epigenetic Criterion Landscape 1.3. Epigenetic Mechanisms 1.4. DNA Methylation 1.5. Histone Changes 1.6. Posttranslational Histone Modifications 1.7. Noncoding RNAs 1.8. DNA Methyltransferase Enzymes 1.9. The Role of DNA Methylation and Histone Acetylation in the Regulation of Gene Expression 1.10. Relationship Between Gene Silencing and Disease 1.11. Epigenetics in Normal Cells 1.11.1. DNA Methylation 1.11.2. Histone Changes 1.12. Epigenetic Changes in Cancers 1.12.1. DNA Methylation in Cancer 1.12.2. Histone Modifications in Cancer 1.13. Impacts of Epigenetic Changes on MiRNAs 1.14. Epigenetic Biomarkers in Cancer 1.15. Epigenetic Treatments 1.16. MiRNAs’ Role in Cancer 1.17. Epigenetic Alterations and MiRNAs 1.18. MiRNA Genes Targeted by Epigenetic Modifications 1.19. Epi-MiRNAs: A New Group of MiRNAs 1.20. Controlling MiRNA Expression with Epigenetic Drugs 1.21. MiRNAs: Regulators of Chromatin Structure? 1.22. Clinical Applications: Epigenetic Tumor Markers 1.23. Aberrant DNA Methylation in Cancer Risk Assessment and Prevention 1.24. Aberrant DNA Methylation as a Diagnostic Tool 1.25. Aberrant DNA Methylation and Assessment of Prognosis/Response to Therapeutics 1.26. MiRNAs in Cancer Diagnosis, Classification, and Prognosis 1.27. Clinical Applications: Epigenetic Therapy 1.28. Conclusions References Chapter 2: Circulating MiRNAs in Human Cancer: Cancer Biomarkers and Epigenetic Modifications 2.1. Blood Cell Origin of Circulating MiRNAs 2.2. Overview of Lung Cancer 2.3. MiRNAs 2.3.1. MiRNAs: Biogenesis 2.3.2. MiRNAs: The Regulatory Role 2.3.3. MiRNAs: Targets 2.3.4. MiRNAs: Transports 2.4. MiRNAs and Cancer 2.5. Epigenetics 2.5.1. DNA Methylation 2.5.2. Histone Modification 2.6. Epigenetics and Cancer 2.7. Epigenetic Modifications and MiRNA Expression 2.7.1. Epigenetic Modifications affect MiRNA Expression 2.7.1.1. MiR-9 Family 2.7.1.2. MiR-34 Family 2.7.1.3. MiR-148a 2.7.1.4. MiR-193a 2.7.1.5. MiR-126 2.7.1.6. MiR-124. Family 2.7.1.7. MiR-152 2.7.1.8. MiR-200. Family 2.7.1.9. Let-7a-3 2.7.1.10. MiR-127 2.7.1.11. MiR-487b 2.7.1.12. MiR-205 2.7.2. MiRNAs that Target Epigenetic Machinery 2.7.2.1. MiR-29 Family 2.7.2.2. MiR-148a 2.7.2.3. MiR-101 2.8. Clinical Samples and Plasma Preparation 2.9. MiRNA Limitations in Clinical Application and Plans for Introducing MiRNA as a Biomarker in Clinic 2.10. Conclusion References Chapter 3: The Role of Circulating MiRNAs in Diagnosis, Prognosis, and Treatment Targets of Cancer and Diseases 3.1. General Considerations on Cellular MiRNAs 3.2. Circulating MiRNAs: The New Frontier of Intercellular Communication 3.3. Circulating MiRNAs in Health and Disease 3.4. Circulating MiRNAs in Autoimmune Diseases, Inflammatory and Metabolic Disorders 3.5. Cellular and Circulating MiRNAs in Neoplastic Diseases 3.5.1. Cellular MiRNAs in Oncologic Patients 3.5.2. Circulating MiRNAs and Cancer 3.6. Specific Patterns of Circulating MiRNAs in Cancer Patients 3.6.1. Lung Cancer 3.6.2. Breast Cancer 3.6.3. Patients with Liver Damage and Hepatocellular Carcinoma 3.6.4. Pancreatic Cancer 3.6.5. Biliary Tract Cancer: MiRNA in Bodily Fluids 3.6.6. Upper Digestive Tract: Esophageal Carcinoma and Gastric Cancer 3.6.7. Colorectal Cancer 3.6.8. Renal Cell Carcinoma and Prostate Cancer 3.6.9. Salivary MiRNAs and Oral Cancer Detection 3.6.10. Hematologic Neoplasias 3.6.11. LLC 3.6.12. Acute Leukemia, Myelodysplastic Syndrome, and Multiple Myeloma 3.7. Advantages and Potential of MiRNAs as Blood-Based Cancer Biomarkers 3.8. Limits and Challenges of Circulating MiRNAs 3.9. Conclusions and Future Perspectives for Circulating MiRNAs References Chapter 4: MicroRNA’s Potential in Human Cancer as Therapeutic Targets and Novel Biomarkers 4.1. Cancer and MiRNA Overview 4.2. MicroRNAs: Genomics, Biogenesis, and Mode of Action 4.3. MiRNA Biogenesis and Mechanism of Action 4.4. Methods for Studying MiRNA Genetics and Expression 4.4.1. MiRNA Profiling 4.4.2. MiRNA Databases and Validation 4.5. Mechanisms of Alteration of MiRNA Levels in Malignancy 4.5.1. General Principles of MiRNA Genomic Organization 4.5.2. Alterations in Genomic MiRNA Copy Numbers and Location 4.5.3. Alterations in MiRNA Transcriptional Regulation 4.5.4. MiRNA Biogenesis Pathway in Tumorigenesis 4.5.4.1. Alterations in RNASEN/DGCR8 and DICER1/TARBP2 4.5.4.2. Alterations in Other Pathway-Related RBPs 4.6. Dysregulation of MiRNA-MRNA Target Recognition 4.6.1. MiRNA Function/Mechanism 4.6.2. Organization of MiRNAs into Sequence Families 4.6.3. MiRNA-MRNA Stoichiometry 4.7. MiRNA Target Identification 4.7.1. Changes in MiRNA Targets 4.8. Distinct MiRNA Profiles of Cancer Tissues 4.8.1. MicroRNAs and Cancer 4.8.2. MiRNA Cancer Database 4.8.3. Tissue Heterogeneity 4.8.4. MicroRNAs as Tumor Suppressors 4.8.4.1. MicroRNA-15a and MicroRNA-16-1 4.8.4.2. let-7 MicroRNA Family 4.8.4.3. MicroRNA-34 Family 4.8.5. Tumor Suppressive MiRNAs and Oncomirs 4.8.5.1. HCC Recurrence 4.8.5.2. “MiRNA Perspective” in Liver Cancer 4.8.6. MicroRNAs as Oncogenes 4.8.6.1. MicroRNA-17-92-1. Cluster 4.8.6.2. MicroRNA-372. and MicroRNA-373 4.8.6.3. MicroRNA-21 4.8.6.4. MicroRNA-155 4.8.7. MiRNA-Regulated Pathways 4.9. Cancer-Related MiRNAs and their Altered Expression in HCC 4.10. MiRNA as a Diagnostic Tool 4.11. Circulating MiRNAs 4.12. Alterations of MiRNA Sequence 4.13. MiRNAs as Therapeutics 4.14. MicroRNAs and their Future use in the Clinic: Diagnosis, Prognosis, and Therapy 4.15. Conclusion References Chapter 5: Biological Function of miRNA and piRNA Targets in Cancer Tissues 5.1. SncRNAs (Small Noncoding RNAs) 5.2. The Role of piRNAs in Cancer 5.2.1. Gastric Cancer 5.2.2. Breast Cancer 5.2.3. Bladder Cancer 5.2.4. Lung Cancer 5.2.5. Liver Cancer 5.2.6. Colorectal Cancer 5.3. Biological Function of MicroRNAs 5.4. The Regulation of miR-193A-3P Expression 5.4.1. Transcription Factors and Regulatory Proteins 5.4.2. Epigenetic Regulation by DNA Methylation 5.4.3. Competing Endogenous RNA (ceRNA) 5.5. Expression Profile of Mir-193a in Normal Human Tissue 5.6. Biological Function of Mir-193a-3p in Development and Cell Physiology 5.7. miR-193a-3p Functions as Tumor Suppressor in Cancer 5.7.1. miR-193a-3p Limits Cancer Cell Proliferation and Impairs Cell Cycle Progression 5.7.2. miR-193a-3p Induces Cell Death Mainly by Promoting Apoptosis 5.7.3. miR-193a-3p Impairs Cancer Migration, Invasion, and Metastasis 5.7.4. miR-193a-3p Modulates drug Resistance in Cancer Cells 5.8. Gene Annotation Analysis on Predicted and Experimentally Validated Mir-193a-3p Targets 5.9. miR-193a-3p as Diagnostic and Prognostic Biomarker 5.9.1. Dysregulation of miR-193a-3p in Cancer Tissues 5.9.2. Circulating miR-193a-3p Levels in Pathological Conditions 5.10. Conclusions and Perspectives References Chapter 6: Delivery Strategies for siRNA and Modifications Process of RNAi Therapeutics for Cancer Treatment 6.1. Small Interfering RNA (siRNA) Therapeutics for Cancer Treatment 6.2. Challenges in Clinical Applications of siRNA 6.2.1. Inherent Properties of siRNA 6.2.2. Barriers to siRNA Delivery 6.2.3. Development of Efficient siRNA Delivery System 6.3. Chemical Modification of siRNA 6.3.1. Common Chemical Modification Strategies 6.3.2. Applications of Chemically Modified siRNA 6.4. siRNA Structural Variants 6.4.1. RNAi Triggers with Increased Potency 6.4.2. RNAi Triggers with Reduced Off-Target Effect 6.4.3. RNAi Triggers with Increased Stability 6.5. siRNA Conjugate System 6.5.1. Lipophile–siRNA Conjugates 6.5.2. Polymer–siRNA Conjugates 6.5.3. Aptamer-siRNA Chimeras 6.6. siRNA Polymerization 6.6.1. Sticky siRNA 6.6.2. Multi- siRNA and Poly-siRNA 6.6.3. siRNA Microhydrogel 6.6.4. RNAi Microsponge 6.7. Advances and Hurdles to Clinical Translation of RNAi Therapeutics 6.8. Conclusion References Chapter 7: Clinical siRNA-Based Conjugate Systems for RNAi Cancer Cell Therapy 7.1. Small Interfering RNAs (siRNAs) 7.2. siRNA Conjugates: Pros and Cons as Therapeutics Compared with other Delivery Strategies 7.3. siRNA-Based Conjugate Systems 7.3.1. Aptamer–siRNA Conjugates 7.3.1.1. Biologically Generated Aptamer–siRNA Chimeras 7.3.1.2. Chemically Synthesized Aptamer–siRNA Conjugates 7.3.2. Peptide–siRNA Conjugates 7.3.2.1. Cell-Penetrating Peptides 7.3.2.2. Targeting Peptides 7.3.2.3. Lytic Peptides 7.3.3. Carbohydrate–siRNA Conjugates 7.3.4. Lipid–siRNA Conjugates 7.3.5. Polymer–siRNA Conjugates 7.3.6. Nanostructured Materials–siRNA Conjugates 7.4. RNAi as Gene-Silencing Mechanism 7.5. Current Status of Clinical Trials in RNAi-Based Cancer Therapy 7.6. Immune Checkpoint Inhibitors in Clinical Trials 7.7. Lessons from Previous SiRNA Conjugate Studies and Perspectives of Clinical Applications 7.8. Conclusion and Perspectives References Chapter 8: Potential for siRNA in Types of Genetic Disease, Cancer Therapeutics 8.1. Lung Cancer 8.2. Liver Cancer 8.3. Prostate Cancer 8.4. Breast Cancer 8.5. Ovarian Cancer 8.6. Delivery Challenge 8.7. Targeting Challenge 8.8. Conclusion References Chapter 9: Recent Advances in miRNA Molecule Delivery as Anticancer Drugs 9.1. Brief Introduction to miRNAs 9.2. Therapeutic Applications and Challenges of Using miRNAs 9.2.1. Brief Overview of miRNA Therapeutics 9.2.2. Challenges of miRNA Therapy 9.3. Nonviral miRNA Delivery Systems for Cancer Therapy 9.3.1. Lipid-Based Nanocarriers 9.3.2. Polymeric Vectors 9.3.2.1. Polyethylenimine 9.3.2.2. Atelocollagen 9.3.2.3. Poly (Lactide-Co-Glycolide) 9.3.3. Dendrimer-Based Vectors (Polyamidoamine Dendrimers) 9.3.4. Amphiphilic Star-Branched Copolymers 9.3.5. Inorganic Materials 9.4. Targeted Delivery of miRNA 9.4.1. Passive Targeted Delivery 9.4.2. Active Targeted Delivery 9.4.2.1. Peptides or Protein Ligands 9.4.2.2. Antibodies 9.4.2.3. Aptamers 9.4.2.4. Other Ligands 9.4.2.5. Magnetic Nanoparticles 9.5. miRNA Molecules and miRNA-Regulating Machinery Associated with Clinical Features 9.6. Genesis of Mature miRNA Molecules 9.6.1. miRNA-Regulating Machinery 9.6.2. Primer on miRNA Nomenclature 9.7. Clinical Implications 9.7.1. Aberrant Expression of miRNA-Biogenesis Machinery Components in EOC 9.7.2. Aberrant miRNA-Regulating Machinery Expression in Mouse Models 9.7.3. Genetic Alterations of miRNA Machinery Genes 9.8. miRNA Molecules as Clinical Biomarkers for EOC 9.8.1. miRNA Molecules with Clinical Associations 9.8.2. miRNA Molecules in Rare Histotypes of EOC 9.8.3. miRNA Molecules in Bodily Fluids as Biomarkers 9.8.4. miRNA Molecules as Markers of Treatment Specificity 9.8.5. Hypoxia-Regulated miRNA Molecules in EOC 9.9. miRNA Molecules as Therapy for EOC 9.10. Challenges to Clinical use of miRNA Molecules and miRNA Regulatory Machinery in EOC 9.11. Conclusions References Chapter 10: DNA-Damaging Cancer Therapies and FDA Novel Drug Approvals 10.1. Defects in Signaling and Repair of DNA Damage 10.2. Clinical-Translational Advances 10.3. Sonodynamic Activities of Porphyrins 10.4. FDA Novel Drug Approvals for 2019 10.5. Conclusions References Chapter 11: Therapeutic Potential Role of miRNAs in Pancreatic and Prostate Cancer Cells 11.1. Epigenetic Contributions to Cancer 11.1.1. An Epigenetic Basis for Prostate Cancer 11.1.2. An Emergent Understanding on the Role of miRNA in Prostate Cancer 11.2. Interplay Between Histone Modifications, DNA Methylation, and miRNA 11.2.1. Regulation of DNA and Histone Modifications Under the Control of miRNAs in Prostate Cancer 11.2.2. Regulation of miRNAs by DNA and Histone Modification in Prostate Cancer 11.3. Pancreatic Cancer 11.3.1. Deregulated miRNAs in Pancreatic Cancer 11.4. MiRNA and KRAS in Pancreatic Cancer 11.5. MiRNA and the p53 Pathway 11.5.1. p53-Mediated Regulation of miRNAs 11.5.2. miRNAs Regulating p53 Expression 11.6. p16 and MiRNA in Pancreatic Cancer 11.7. TGF-β/SMAD Signaling Regulates MiRNAs in PC 11.8. Sonic Hedgehog Signaling and MiRNA in Pancreatic Cancer 11.9. The Impact of MiRNAs on Cell Cycle and Proliferation of Pancreatic Cancer Cells 11.10. Potential Role of MiRNAs in Pancreatic Cancer Diagnosis 11.11. MiRNAs as Therapeutic Agents in Pancreatic Cancer 11.11.1. Targeting of miRNAs in Pancreatic Cancer 11.12. Clinical Exploitation of Epigenetic States in Prostate Cancer 11.12.1. Epigenetic Modifications as Biomarkers in Prostate Cancer 11.12.2. Diagnostic and Prognostic miRNA Expression Patterns 11.12.3. Insights from the Cancer Genome Atlas (TCGA) and ENCODE 11.13. Conclusions References Chapter 12: Regulation of miRNAs and Their Role in Regeneration and Cancer Diseases 12.1. Introduction 12.2. MiRNA 12.3. Liver Development 12.3.1. MiRNAs in Liver Development 12.4. MiRNAs in Liver Regeneration 12.5. Transcriptional Regulation of MiRNA 12.6. Posttranscriptional Regulation of MiRNA 12.7. Epigenetic Alterations of MiRNA 12.8. Single-Nucleotide Polymorphism and Genetic Alterations 12.9. Deregulation of MiRNA in HCC 12.10. Suppression of Apoptosis 12.11. Alteration of Signaling Pathways 12.12. Epithelial–Mesenchymal Transition and Metastasis 12.13. MiRNAs as Diagnostic Markers in HCC 12.14. Predictive Prognostic Value of MiRNAs in HCC 12.15. MiRNAs and Liver Disease 12.15.1. Alcoholic Liver Disease 12.15.2. Nonalcoholic Fatty Liver Disease 12.15.3. Viral Hepatitis 12.15.4. Primary Liver Cancer 12.16. MiRNAs in HCC Therapy 12.17. Conclusions and Future Directions References Chapter 13: Novel Classes of Noncoding RNAs and Cancer Biology Therapeutic Targets 13.1. Introduction 13.2. Noncoding RNAs: Classification 13.2.1. Small Noncoding RNAs 13.2.2. MiRNAs 13.2.3. piRNAs 13.2.4. snoRNAs 13.2.5. lncRNAs 13.2.6. Small Interfering RNAs 13.3. Piwi Protein–Associated RNAs 13.4. Small Nucleolar RNAs 13.5. Promoter-Associated RNAs 13.6. Centromere Repeat Associated Small Interacting RNAs 13.7. Telomere-Specific Small RNAs 13.8. Pyknons 13.9. Long Noncoding RNAs 13.10. Long Intergenic Noncoding RNAs 13.11. Long Intronic Noncoding RNAs 13.12. Telomere-Associated ncRNAs 13.13. Long NcRNAs with Dual Functions 13.14. Pseudogene RNAs 13.15. Transcribed Ultraconserved Regions 13.16. Deregulated Expression of ncRNAs in MM 13.16.1. miRNAs 13.16.1.1. Genomic Alterations 13.16.1.2. Transcriptional Regulation 13.16.1.3. Epigenetic Regulation 13.16.2. Other ncRNAs 13.17. ncRNAs as Potential Clinical Biomarkers in MM 13.18. ncRNA-Based Therapeutic Strategies in MM 13.19. Expert Opinion 13.20. Conclusions and Future Perspectives References Chapter 14: Advances in the Inhibition and Optimization of Checkpoint Kinases by Small Molecules for the Treatment of Cancer 14.1. DNA-Targeting Therapies 14.2. Overview of CHK1 Inhibitors in the Clinic 14.2.1. XL-844 14.2.2. AZD-7762 14.2.3. PF-477736 14.3. Drug Design and SAR of CHK1 Inhibitors from Preclinical Research Programs 14.3.1. ICOS Corp CHK1 Inhibitors 14.3.2. Millennium Pharmaceuticals Inc. CHK1 Inhibitors 14.3.3. Abbott Laboratories CHK1 Inhibitors 14.3.4. Chiron Corp. CHK1 inhibitors 14.3.5. Merck and Co. Inc. CHK1 Inhibitors 14.3.6. Vernalis plc CHK1 Inhibitors 14.3.7. Other CHK1 Inhibitors 14.4. Preclinical Overview of Suggested siRNA Delivery Systems and Pros/Concern of DNA-Based Gene Delivery Carriers 14.5. Conclusion and Future Perspectives References Chapter 15: Recent Therapeutic Prospects of miRNAs and siRNA Delivery Systems in Cancer Treatment Nanobiotechnology 15.1. Role of MiRNAs in Regulating Disease 15.2. Description of MiRNA Biogenesis and Regulation 15.3. MiRNA and SiRNA Delivery Systems for Applications in Cancer Therapy 15.4. MiRNA Delivery Through Nanoparticles in Cancer Therapy 15.5. Role of Nanoparticles in MiRNA Biosensor Chemotherapeutic Delivery Technology 15.6. MiRNAs are Important Regulators of Cancer Multidrug Resistance and Metastatic Capacity 15.7. MiRNA Detection 15.8. Delivery Systems used in Cancer Research 15.8.1. Viral Delivery Systems 15.8.2. Nonviral Delivery Systems 15.8.3. Gold Nanoparticles 15.8.4. Liposomes 15.8.5. Hybrid Systems 15.8.6. Dendrimers 15.8.7. Carbon Nanotubes 15.9. Nanoscale Immunotherapy 15.10. Conclusions and Future Prospects References List of Abbreviations Index